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Introduction

Welcome to the Handbook of Biological Statistics! This handbook evolved from a set
of notes for my Biological Data Analysis class at the University of Delaware. My main
goal in that class is to teach biology students how to choose the appropriate statistical test
for a particular experiment, then apply that test and interpret the results. I spend relatively
little time on the mathematical basis of the tests; for most biologists, statistics is just a
useful tool, like a microscope, and knowing the detailed mathematical basis of a statistical
test is as unimportant to most biologists as knowing which kinds of glass were used to
make a microscope lens. Biologists in very statistics-intensive fields, such as ecology,
epidemiology, and systematics, may find this handbook to be a bit superficial for their
needs, just as a microscopist using the latest techniques in 4-D, 3-photon confocal
microscopy needs to know more about their microscope than someone who's just counting
the hairs on a fly's back.

The online version of this handbook is available at http://udel.edu/~mcdonald/
statintro.html. If you want additional printed copy of the whole handbook, you can buy one
from Lulu.com. I've used this print-on-demand service as a convenience to you, not as a
money-making scheme, so don't feel obligated to buy one. You can also download a free
pdf of the entire handbook from that link and print it yourself.

I have written a spreadsheet to perform almost every statistical test; they're linked from
the online handbook, and the urls are printed here. Each comes with sample data already
entered; just download the program, replace the sample data with your data, and you'll have
your answer. The spreadsheets were written for Excel, but they should also work using the
free program Calc, part of the OpenOffice.org (http://www.openoffice.org/) suite of
programs. If you're using OpenOffice.org, some of the graphs may need re-formatting, and
you may need to re-set the number of decimal places for some numbers. Let me know if
you have a problem using one of the spreadsheets, and I'll try to fix it.

I've also linked to a web page for each test wherever possible. I found most of these
web pages using John Pezzullo's excellent list of Interactive Statistical Calculation Pages
(http://StatPages.org) , which is a good place to look for information about tests that are not
discussed in this handbook.

There are instructions for performing each statistical test in SAS, as well. It's not as
easy to use as the spreadsheets or web pages, but if you're going to be doing a lot of
advanced statistics, you're going to have to learn SAS or a similar program sooner or later.
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I am constantly trying to improve this textbook. If you find errors or have suggestions
for improvement, please e-mail me at mcdonald@udel.edu. If you have statistical questions
about your research, I'll be glad to try to answer them. However, I must warn you that I'm
not an expert in statistics, so if you're asking about something that goes far beyond what's
in this textbook, I may not be able to help you. And please don't ask me for help with your
statistics homework (unless you're in my class, of course!).

Further reading
There are lots of statistics textbooks, but most are too elementary to use as a serious

reference, too math-obsessed, or not biological enough. The two books I use the most, and
see cited most often in the biological literature, are Sokal and Rohlf (1995) and Zar (1999).
They cover most of the same topics, at a similar level, and either would serve you well
when you want more detail than I provide in this handbook. I've provided references to the
appropriate pages in both books on most of these web pages.

There are a number of online statistics manuals linked at StatPages.org. If you're
interested in business statistics, time-series analysis, or other topics that I don't cover here,
that's an excellent place to start. Wikipedia has some good articles on statistical topics,
while others are either short and sketchy, or overly technical.

Sokal, R.R., and F.J. Rohlf. 1995. Biometry: The principles and practice of statistics in
biological research. 3rd edition. W.H. Freeman, New York.

Zar, J.H. 1999. Biostatistical analysis. 4th edition. Prentice Hall, Upper Saddle River, NJ.
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Step-by-step analysis of
biological data

I find that a systematic, step-by-step approach is the best way to analyze biological
data. The statistical analysis of a biological experiment may be broken down into the
following steps:

1. Specify the biological question to be answered.
2. Put the question in the form of a biological null hypothesis and alternate

hypothesis.
3. Put the question in the form of a statistical null hypothesis and alternate

hypothesis.
4. Determine which variables are relevant to the question.
5. Determine what kind of variable each one is.
6. Based on the number of variables, the kind of variables, the expected fit to the

parametric assumptions, and the hypothesis to be tested, choose the best statistical
test to use.

7. Do the experiment.
8. Examine the data to see if it meets the assumptions of the statistical test you chose

(normality, homoscedasticity, etc.). If it doesn't, choose a more appropriate test.
9. Apply the chosen statistical test, and interpret the result.

10. Communicate your results effectively, usually with a graph or table.

Here's an example of how this works. Verrelli and Eanes (2001) measured glycogen
content in Drosophila melanogaster individuals. The flies were polymorphic at the genetic
locus that codes for the enzyme phosphoglucomutase (PGM). At site 52 in the PGM
protein sequence, flies had either a valine or an alanine. At site 484, they had either a valine
or a leucine. All four combinations of amino acids (V-V, V-L, A-V, A-L) were present.

1. One biological question is "Do the amino acid polymorphisms at the Pgm locus
have an effect on glycogen content?" The biological question is usually something
about biological processes, usually in the form "Does X cause Y?"

2. The biological null hypothesis is "Different amino acid sequences do not affect the
biochemical properties of PGM, so glycogen content is not affected by PGM
sequence." The biological alternative hypothesis is "Different amino acid
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sequences do affect the biochemical properties of PGM, so glycogen content is
affected by PGM sequence."

3. The statistical null hypothesis is "Flies with different sequences of the PGM
enzyme have the same average glycogen content." The alternate hypothesis is
"Flies with different sequences of PGM have different average glycogen contents."
While the biological null and alternative hypotheses are about biological processes,
the statistical null and alternative hypotheses are all about the numbers; in this
case, the glycogen contents are either the same or different.

4. The two relevant variables are glycogen content and PGM sequence. Other
variables that might be important, such as the age of the flies, are either controlled
(flies of all the same age are used) or randomized (flies of each PGM sequence are
drawn randomly from a range of ages, so there is no consistent difference in age
between the PGM sequences).

5. Glycogen content is a measurement variable, something that is recorded as a
number that could have many possible values. The sequence of PGM that a fly has
(V-V, V-L, A-V or A-L) is a nominal variable, something with a small number of
possible values (four, in this case) that is usually recorded as a word.

6. Because the goal is to compare the means of one measurement variable among
groups classified by one nominal variable, and there are more than two classes, the
appropriate statistical test is a Model I one-way anova.

7. The experiment was done: glycogen content was measured in flies with different
PGM sequences.

8. The anova assumes that the measurement variable, glycogen content, is normal
(the distribution fits the bell-shaped normal curve) and homoscedastic (the
variances in glycogen content of the different PGM sequences are equal), and
inspecting histograms of the data shows that the data fit these assumptions. If the
data hadn't met the assumptions of anova, the Kruskal–Wallis test would have been
better.

9. The one-way anova is done, using a spreadsheet, web page, or computer program,
and the result of the anova is a P-value less than 0.05. The interpretation is that
flies with some PGM sequences have different average glycogen content than flies
with other sequences of PGM.

10. The results could be summarized in a table, but a more effective way to
communicate them is with a graph:
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Glycogen content in Drosophila melanogaster. Each bar
represents the mean glycogen content (in micrograms per fly) of

12 flies with the indicated PGM haplotype. Narrow bars
represent +/-2 standard errors of the mean.

Reference
Verrelli, B.C., and W.F. Eanes. 2001. The functional impact of PGM amino acid

polymorphism on glycogen content in Drosophila melanogaster. Genetics 159:
201-210. (Note that for the purposes of this web page, I've used a different statistical
test than Verrelli and Eanes did. They were interested in interactions among the
individual amino acid polymorphisms, so they used a two-way anova.)
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Types of variables

One of the first steps in deciding which statistical test to use is determining what kinds
of variables you have. When you know what the relevant variables are, what kind of
variables they are, and what your null and alternative hypotheses are, it's usually pretty
obvious which test you should use. For our purposes, it's important to classify variables
into three types: measurement variables, nominal variables, and ranked variables.

Similar experiments, with similar null and alternative hypotheses, will be analyzed
completely differently depending on which of these three variable types are involved. For
example, let's say you've measured variable X in a sample of 56 male and 67 female
isopods (Armadillidium vulgare, commonly known as pillbugs or roly-polies), and your
null hypothesis is "Male and female A. vulgare have the same values of variable X." If
variable X is width of the head in millimeters, it's a measurement variable, and you'd
analyze it with a t-test or a Model I one-way analysis of variance (anova). If variable X is a
genotype (such as AA, Aa, or aa), it's a nominal variable, and you'd compare the genotype
frequencies with a chi-square test or G-test of independence. If you shake the isopods until
they roll up into little balls, then record which is the first isopod to unroll, the second to
unroll, etc., it's a ranked variable and you'd analyze it with a Kruskal–Wallis test.

Measurement variables
Measurement variables are, as the name implies, things you can measure. An individual

observation of a measurement variable is always a number. Examples include length,
weight, pH, and bone density.

The mathematical theories underlying statistical tests involving measurement variables
assume that they could have an infinite number of possible values. In practice, the number
of possible values of a measurement variable is limited by the precision of the measuring
device. For example, if you measure isopod head widths using an ocular micrometer that
has a precision of 0.01 mm, the possible values for adult isopods whose heads range from 3
to 5 mm wide would be 3.00, 3.01, 3.02, 3.03... 5.00 mm, or only 201 different values. As
long as there are a large number of possible values of the variable, it doesn't matter that
there aren't really an infinite number. However, if the number of possible values of a
variable is small, this violation of the assumption could be important. For example, if you
measured isopod heads using a ruler with a precision of 1 mm, the possible values could be
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3, 4 or 5 mm, and it might not be a good idea to use the statistical tests designed for
continuous measurement variables on this data set.

Variables that require counting a number of objects, such as the number of bacteria
colonies on a plate or the number of vertebrae on an eel, are known as meristic variables.
They are considered measurement variables and are analyzed with the same statistics as
continuous measurement variables. Be careful, however; when you count something, it is
sometimes a nominal variable. For example, the number of bacteria colonies on a plate is a
measurement variable; you count the number of colonies, and there are 87 colonies on one
plate, 92 on another plate, etc. Each plate would have one data point, the number of
colonies; that's a number, so it's a measurement variable. However, if the plate has red and
white bacteria colonies and you count the number of each, it is a nominal variable. Each
colony is a separate data point with one of two values of the variable, "red" or "white";
because that's a word, not a number, it's a nominal variable. In this case, you might
summarize the nominal data with a number (the percentage of colonies that are red), but the
underlying data are still nominal.

Something that could be measured is a measurement variable, even when the values are
controlled by the experimenter. For example, if you grow bacteria on one plate with
medium containing 10 mM mannose, another plate with 20 mM mannose, etc. up to 100
mM mannose, the different mannose concentrations are a measurement variable, even
though you made the media and set the mannose concentration yourself.

Nominal variables
These variables, also called "attribute variables" or "categorical variables," classify

observations into a small number of categories. A good rule of thumb is that an individual
observation of a nominal variable is usually a word, not a number. Examples of nominal
variables include sex (the possible values are male or female), genotype (values are AA, Aa,
or aa), or ankle condition (values are normal, sprained, torn ligament, or broken). Nominal
variables are often used to divide individuals up into classes, so that other variables may be
compared among the classes. In the comparison of head width in male vs. female isopods,
the isopods are classified by sex, a nominal variable, and the measurement variable head
width is compared between the sexes.

Nominal variables are often summarized as proportions or percentages. For example, if
I count the number of male and female A. vulgare in a sample from Newark and a sample
from Baltimore, I might say that 52.3 percent of the isopods in Newark and 62.1 percent of
the isopods in Baltimore are female. These percentages may look like a measurement
variable, but they really represent a nominal variable, sex. I determined the value of the
nominal variable (male or female) on 65 isopods from Newark, of which 34 were female
and 31 were male. I might plot 52.3 percent on a graph as a simple way of summarizing the
data, but I would use the 34 female and 31 male numbers in all statistical tests.

It may help to understand the difference between measurement and nominal variables if
you imagine recording each observation in a lab notebook. If you are measuring head
widths of isopods, an individual observation might be "3.41 mm." That is clearly a
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measurement variable. An individual observation of sex might be "female," which clearly
is a nominal variable. Even if you don't record the sex of each isopod individually, but just
counted the number of males and females and wrote those two numbers down, the
underlying variable is a series of observations of "male" and "female."

It is possible to convert a measurement variable to a nominal variable, dividing
individuals up into a small number of classes based on ranges of the variable. For example,
if you are studying the relationship between levels of HDL (the "good cholesterol") and
blood pressure, you could measure the HDL level, then divide people into two groups, "low
HDL" (less than 40 mg/dl) and "normal HDL" (40 or more mg/dl) and compare the mean
blood pressures of the two groups, using a nice simple t-test.

Converting measurement variables to nominal variables is common in epidemiology,
but I think it's a bad idea and I strongly discourage you from doing it. One problem with
this is that you'd be discarding a lot of information, lumping together everyone with HDL
from 0 to 39 mg/dl into one group, which could decrease your chances of finding a
relationship between the two variables if there really is one. Another problem is that it
would be easy to consciously or subconsciously choose the dividing line between low and
normal HDL that gave an "interesting" result. For example, if you did the experiment
thinking that low HDL caused high blood pressure, and a couple of people with HDL
between 40 and 45 happened to have high blood pressure, you might put the dividing line
between low and normal at 45 mg/dl. This would be cheating, because it would increase the
chance of getting a "significant" difference if there really isn't one.

Ranked variables
Ranked variables, also called ordinal variables, are those for which the individual

observations can be put in order from smallest to largest, even though the exact values are
unknown. If you shake a bunch of A. vulgare up, they roll into balls, then after a little while
start to unroll and walk around. If you wanted to know whether males and females unrolled
at the same average time, you could pick up the first isopod to unroll and put it in a vial
marked "first," pick up the second to unroll and put it in a vial marked "second," and so on,
then sex the isopods after they've all unrolled. You wouldn't have the exact time that each
isopod stayed rolled up (that would be a measurement variable), but you would have the
isopods in order from first to unroll to last to unroll, which is a ranked variable.

You could do a lifetime of biology and never use a true ranked variable. The reason
they're important is that the statistical tests designed for ranked variables (called "non-
parametric tests," for reasons you'll learn later) make fewer assumptions about the data than
the statistical tests designed for measurement variables. Thus the most common use of
ranked variables involves converting a measurement variable to ranks, then analyzing it
using a non-parametric test. For example, let's say you recorded the time that each isopod
stayed rolled up, and that most of them unrolled after one or two minutes. Two isopods,
who happened to be male, stayed rolled up for 30 minutes. If you analyzed the data using a
test designed for a measurement variable, those two sleepy isopods would cause the
average time for males to be much greater than for females, and the difference might look
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statistically significant. When converted to ranks and analyzed using a non-parametric test,
the last and next-to-last isopods would have much less influence on the overall result, and
you would be less likely to get a misleadingly "significant" result if there really isn't a
difference between males and females.

Circular variables
A special kind of measurement variable is a circular variable. These have the property

that the highest value and the lowest value are right next to each other; often, the zero point
is completely arbitrary. The most common circular variables in biology are time of day,
time of year, and compass direction. If you measure time of year in days, Day 1 could be
January 1, or the spring equinox, or your birthday; whichever day you pick, Day 1 is
adjacent to Day 2 on one side and Day 365 on the other.

If you are only considering part of the circle, a circular variable becomes a regular
measurement variable. For example, if you're doing a regression of the height of corn
plants vs. time of year, you might treat Day 1 to be March 28, the day you planted the corn;
the fact that the year circles around to March 27 would be irrelevant, since you would chop
the corn down in September.

If your variable really is circular, there are special, very obscure statistical tests
designed just for circular data; see chapters 26 and 27 in Zar.

Ambiguous variables
When you have a measurement variable with a small number of values, it may not be

clear whether it should be considered a measurement or a nominal variable. For example, if
you compare bacterial growth in two media, one with 0 mM mannose and one with 20 mM
mannose, and you have several measurements of bacterial growth at each concentration,
you should consider mannose to be a nominal variable (with the values "mannose absent"
or "mannose present") and analyze the data using a t-test or a one-way anova. If there are
10 different mannose concentrations, you should consider mannose concentration to be a
measurement variable and analyze the data using linear regression (or perhaps polynomial
regression).

But what if you have three concentrations of mannose, or five, or seven? There is no
rigid rule, and how you treat the variable will depend in part on your null and alternative
hypotheses. In my class, we use the following rule of thumb:
—a measurement variable with only two values should be treated as a nominal variable;
—a measurement variable with six or more values should be treated as a measurement
variable;
—a measurement variable with three, four or five values does not exist.

Of course, in the real world there are experiments with three, four or five values of a
measurement variable. Your decision about how to treat this variable will depend in part on
your biological question. You can avoid the ambiguity when you design the experiment--if
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you want to know whether a dependent variable is related to an independent variable, it's a
good idea to have at least six values of the independent variable.

Ratios
Some biological variables are ratios of two measurement variables. If the denominator

in the ratio has no biological variation and a small amount of measurement error, such as
heartbeats per minute or white blood cells per ml of blood, you can treat the ratio as a
regular measurement variable. However, if both numerator and denominator in the ratio
have biological variation, it is better, if possible, to use a statistical test that keeps the two
variables separate. For example, if you want to know whether male isopods have relatively
bigger heads than female isopods, you might want to divide head width by body length and
compare this head/body ratio in males vs. females, using a t-test or a one-way anova. This
wouldn't be terribly wrong, but it could be better to keep the variables separate and
compare the regression line of head width on body length in males to that in females using
an analysis of covariance.

Sometimes treating two measurement variables separately makes the statistical test a lot
more complicated. In that case, you might want to use the ratio and sacrifice a little
statistical rigor in the interest of comprehensibility. For example, if you wanted to know
whether their was a relationship between obesity and high-density lipoprotein (HDL) levels
in blood, you could do multiple regression with height and weight as the two X variables
and HDL level as the Y variable. However, multiple regression is a complicated, advanced
statistical technique, and if you found a significant relationship, it could be difficult to
explain to your fellow biologists and very difficult to explain to members of the public who
are concerned about their HDL levels. In this case it might be better to calculate the body
mass index (BMI), the ratio of weight over squared height, and do a simple linear
regression of HDL level and BMI.

Further reading
Sokal and Rohlf, pp. 10-13.

Zar, pp. 2-5 (measurement, nominal and ranked variables); pp. 592-595 (circular variables).
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Probability

The basic idea of a statistical test is to identify a null hypothesis, collect some data, then
estimate the probability of getting the observed data if the null hypothesis were true. If the
probability of getting a result like the observed one is low under the null hypothesis, you
conclude that the null hypothesis is not true. It is therefore useful to know a little about
probability.

One way to think about probability is as the proportion of individuals in a population
that have a particular characteristic. (In this case, both "individual" and "population" have
somewhat different meanings than they do in biology.) The probability of sampling a
particular kind of individual is equal to the proportion of that kind of individual in the
population. For example, in fall 2003 there were 21,121 students at the University of
Delaware, and 16,428 of them were undergraduates. If a single student were sampled at
random, the probability that they would be an undergrad would be 16,428 / 21,121, or
0.778. In other words, 77.8% of students were undergrads, so if you'd picked one student at
random, the probability that they were an undergrad would have been 77.8%.

When dealing with probabilities in biology, you are often working with theoretical
expectations, not population samples. For example, in a genetic cross of two individual
Drosophila melanogaster that are heterozygous at the white locus, Mendel's theory predicts
that the probability of an offspring individual being a recessive homozygote (having white
eyes) is one-fourth, or 0.25. This is equivalent to saying that one-fourth of a population of
offspring will have white eyes.

Multiplying probabilities
You could take a semester-long course on mathematical probability, but most biologists

just need a few basic principles. The probability that an individual has one value of a
nominal variable AND another value is estimated by multiplying the probabilities of each
value together. For example, if the probability that a Drosophila in a cross has white eyes is
one-fourth, and the probability that it has legs where its antennae should be is three-fourths,
the probability that it has white eyes AND leg-antennae is one-fourth times three-fourths,
or 0.25 X 0.75, or 0.1875. This estimate assumes that the two values are independent,
meaning that the probability of one value is not affected by the other value. In this case,
independence would require that the two genetic loci were on different chromosomes,
among other things.

Probability
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Adding probabilities
The probability that an individual has one value OR another, MUTUALLY

EXCLUSIVE, value is found by adding the probabilities of each value together. "Mutually
exclusive" means that one individual could not have both values. For example, if the
probability that a flower in a genetic cross is red is one-fourth, the probability that it is pink
is one-half, and the probability that it is white is one-fourth, then the probability that it is
red OR pink is one-fourth plus one-half, or three-fourths.

More complicated situations
When calculating the probability that an individual has one value OR another, and the

two values are NOT MUTUALLY EXCLUSIVE, it is important to break things down into
combinations that are mutually exclusive. For example, let's say you wanted to estimate the
probability that a fly from the cross above had white eyes OR leg-antennae. You could
calculate the probability for each of the four kinds of flies: red eyes/normal antennae (0.75
X 0.25 = 0.1875), red eyes/leg-antennae (0.75 X 0.75 = 0.5625), white eyes/normal
antennae (0.25 X 0.25 = 0.0625), and white eyes/leg-antennae (0.25 X 0.75 = 0.1875).
Then, since the last three kinds of flies are the ones with white eyes or leg-antennae, you'd
add those probabilities up (0.5625 + 0.0625 + 0.1875 = 0.8125).

When to calculate probabilities
While there are some kind of probability calculations underlying all statistical tests, it is

rare that you'll have to use the rules listed above. About the only time you'll actually
calculate probabilities by adding and multiplying is when figuring out the expected values
for a goodness-of-fit test.

Further reading
Sokal and Rohlf, pp. 62-71.

Zar, pp. 48-63.
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Basic concepts of hypothesis
testing

Null hypothesis
The null hypothesis is a statement that you want to test. In general, the null hypothesis

is that things are the same as each other, or the same as a theoretical expectation. For
example, if you measure the size of the feet of male and female chickens, the null
hypothesis could be that the average foot size in male chickens is the same as the average
foot size in female chickens. If you count the number of male and female chickens born to
a set of hens, the null hypothesis could be that the ratio of males to females is equal to the
theoretical expectation of a 1:1 ratio.

The alternative hypothesis is that things are different from each other, or different from
a theoretical expectation. For example, one alternative hypothesis would be that male
chickens have a different average foot size than female chickens; another would be that the
sex ratio is different from 1:1.

Usually, the null hypothesis is boring and the alternative hypothesis is interesting.
Finding that male chickens have bigger feet than female chickens might lead to all kinds of
exciting discoveries about developmental biology, endocrine physiology, or sexual
selection in chickens. Finding that male and female chickens have the same size feet
wouldn't lead to anything except a boring paper in the world's most obscure chicken
journal. It's therefore tempting to look for patterns in your data that support the exciting
alternative hypothesis. For example, you might measure the feet of 10 male chickens and
10 female chickens and find that the mean is 0.1 mm longer for males. You're almost
certain to get some difference in the means, just due to chance, so before you get all happy
and start buying formal wear for the Nobel Prize ceremony, you need to ask "What's the
probability of getting a difference in the means of 0.1 mm, just by chance, if the boring null
hypothesis is really true?" Only when that probability is low can you reject the null
hypothesis. The goal of statistical hypothesis testing is to estimate the probability of getting
your observed results under the null hypothesis.

Biological vs. statistical null hypotheses
It is important to distinguish between biological null and alternative hypotheses and

statistical null and alternative hypotheses. "Sexual selection by females has caused male
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chickens to evolve bigger feet than females" is a biological alternative hypothesis; it says
something about biological processes, in this case sexual selection. "Male chickens have a
different average foot size than females" is a statistical alternative hypothesis; it says
something about the numbers, but nothing about what caused those numbers to be different.
The biological null and alternative hypotheses are the first that you should think of, as they
describe something interesting about biology; they are two possible answers to the
biological question you are interested in ("What affects foot size in chickens?"). The
statistical null and alternative hypotheses are statements about the data that should follow
from the biological hypotheses: if sexual selection favors bigger feet in male chickens (a
biological hypothesis), then the average foot size in male chickens should be larger than the
average in females (a statistical hypothesis).

Testing the null hypothesis
The primary goal of a statistical test is to determine whether an observed data set is so

different from what you would expect under the null hypothesis that you should reject the
null hypothesis. For example, let's say you've given up on chicken feet and now are
studying sex determination in chickens. For breeds of chickens that are bred to lay lots of
eggs, female chicks are more valuable than male chicks, so if you could figure out a way to
manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've
tested a treatment, and you get 25 female chicks and 23 male chicks. Anyone would look at
those numbers and see that they could easily result from chance; there would be no reason
to reject the null hypothesis of a 1:1 ratio of females to males. If you tried a different
treatment and got 47 females and 1 male, most people would look at those numbers and see
that they would be extremely unlikely to happen due to luck, if the null hypothesis were
true; you would reject the null hypothesis and conclude that your treatment really changed
the sex ratio. However, what if you had 31 females and 17 males? That's definitely more
females than males, but is it really so unlikely to occur due to chance that you can reject the
null hypothesis? To answer that, you need more than common sense, you need to calculate
the probability of getting a deviation that large due to chance.
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P-values

Probability of getting different numbers of males out of 48, if the parametric
proportion of males is 0.5.

In the figure above, the BINOMDIST function of Excel was used to calculate the
probability of getting each possible number of males, from 0 to 48, under the null
hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48
total chickens is about 0.015. That seems like a pretty small probability, doesn't it?
However, that's the probability of getting exactly 17 males. What you want to know is the
probability of getting 17 or fewer males. If you were going to accept 17 males as evidence
that the sex ratio was biased, you would also have accepted 16, or 15, or 14,… males as
evidence for a biased sex ratio. You therefore need to add together the probabilities of all
these outcomes. The probability of getting 17 or fewer males out of 48, under the null
hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males
and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the
samples would have 17 or fewer males.

This number, 0.030, is the P-value. It is defined as the probability of getting the
observed result, or a more extreme result, if the null hypothesis is true. So "P=0.030" is a
shorthand way of saying "The probability of getting 17 or fewer male chickens out of 48
total chickens, IF the null hypothesis is true that 50 percent of chickens are male, is 0.030."

Significance levels
Does a probability of 0.030 mean that you should reject the null hypothesis, and

conclude that your treatment really caused a change in the sex ratio? The convention in
most biological research is to use a significance level of 0.05. This means that if the
probability value (P) is less than 0.05, you reject the null hypothesis; if P is greater than or
equal to 0.05, you don't reject the null hypothesis. There is nothing mathematically magic
about 0.05; people could have agreed upon 0.04, or 0.025, or 0.071 as the conventional
significance level.
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The significance level you use depends on the costs of different kinds of errors. With a
significance level of 0.05, you have a 5 percent chance of rejecting the null hypothesis,
even if it is true. If you try 100 treatments on your chickens, and none of them really work,
5 percent of your experiments will give you data that are significantly different from a 1:1
sex ratio, just by chance. This is called a "Type I error," or "false positive." If there really is
a deviation from the null hypothesis, and you fail to reject it, that is called a "Type II error,"
or "false negative." If you use a higher significance level than the conventional 0.05, such
as 0.10, you will increase your chance of a false positive to 0.10 (therefore increasing your
chance of an embarrassingly wrong conclusion), but you will also decrease your chance of
a false negative (increasing your chance of detecting a subtle effect). If you use a lower
significance level than the conventional 0.05, such as 0.01, you decrease your chance of an
embarrassing false positive, but you also make it less likely that you'll detect a real
deviation from the null hypothesis if there is one.

You must choose your significance level before you collect the data, of course. If you
choose to use a different signifigance level than the conventional 0.05, be prepared for
some skepticism; you must be able to justify your choice. If you were screening a bunch of
potential sex-ratio-changing treatments, the cost of a false positive would be the cost of a
few additional tests, which would show that your initial results were a false positive. The
cost of a false negative, however, would be that you would miss out on a tremendously
valuable discovery. You might therefore set your significance value to 0.10 or more. On the
other hand, once your sex-ratio-changing treatment is undergoing final trials before being
sold to farmers, you'd want to be very confident that it really worked, not that you were just
getting a false positive. Otherwise, if you sell the chicken farmers a sex-ratio treatment that
turns out to not really work (it was a false positive), they'll sue the pants off of you.
Therefore, you might want to set your significance level to 0.01, or even lower.
Throughout this handbook, I will always use P<0.05 as the significance level.

One-tailed vs. two-tailed probabilities
The probability that was calculated above, 0.030, is the probability of getting 17 or

fewer males out of 48. It would be significant, using the conventional P<0.05 criterion.
However, what about the probability of getting 17 or fewer females? If your null
hypothesis is "The proportion of males is 0.5 or more" and your alternative hypothesis is
"The proportion of males is less than 0.5," then you would use the P=0.03 value found by
adding the probabilities of getting 17 or fewer males. This is called a one-tailed probability,
because you are adding the probabilities in only one tail of the distribution shown in the
figure. However, if your null hypothesis is "The proportion of males is 0.5", then your
alternative hypothesis is "The proportion of males is different from 0.5." In that case, you
should add the probability of getting 17 or fewer females to the probability of getting 17 or
fewer males. This is called a two-tailed probability. If you do that with the chicken result,
you get P=0.06, which is not quite significant.

You should decide whether to use the one-tailed or two-tailed probability before you
collect your data, of course. A one-tailed probability is more powerful, in the sense of
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having a lower chance of false negatives, but you should only use a one-tailed probability if
you really, truly have a firm prediction about which direction of deviation you would
consider interesting. In the chicken example, you might be tempted to use a one-tailed
probability, because you're only looking for treatments that decrease the proportion of
worthless male chickens. But if you accidentally found a treatment that produced 87
percent male chickens, would you really publish the result as "The treatment did not cause
a significant decrease in the proportion of male chickens"? Probably not. You'd realize that
this unexpected result, even though it wasn't what you and your farmer friends wanted,
would be very interesting to other people. Any time a deviation in either direction would be
interesting, you should use the two-tailed probability. In addition, people are skeptical of
one-tailed probabilities, especially if a one-tailed probability is significant and a two-tailed
probability would not be significant (as in the chicken example). Unless you provide a very
convincing explanation, people may think you decided to use the one-tailed probability
after you saw that the two-tailed probability wasn't quite significant. It may be easier to
always use two-tailed probabilities. For this handbook, I will always use two-tailed
probabilities, unless I make it very clear that only one direction of deviation from the
null hypothesis would be interesting.

Reporting your results
In the olden days, when people looked up P-values in printed tables, they would report

the results of a statistical test as "P<0.05", "P<0.01", "P>0.10", etc. Nowadays, almost all
computer statistics programs give the exact P value resulting from a statistical test, such as
P=0.029, and that's what you should report in your publications. You will conclude that the
results are either significant or they're not significant; they either reject the null hypothesis
(if P is below your pre-determined significance level) or don't reject the null hypothesis (if
P is above your significance level). But other people will want to know if your results are
"strongly" significant (P much less than 0.05), which will give them more confidence in
your results than if they were "barely" significant (P=0.043, for example). In addition, other
researchers will need the exact P value if they want to combine your results with others into
a meta-analysis.

Further reading
Sokal and Rohlf, pp. 157-169.

Zar, pp. 79-85.
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Confounding variables and
random sampling

Confounding variables
Due to a variety of genetic, developmental, and environmental factors, no two

organisms are exactly alike. This means that when you design an experiment to try to see
whether variable X causes a difference in variable Y, you should always ask yourself, is
there some variable Z that could cause an apparent relationship between X and Y?

As an example of such a confounding variable, imagine that you want to compare the
amount of insect damage on leaves of American elms (which are susceptible to Dutch elm
disease) and Princeton elms, a strain of American elms that is resistant to Dutch elm
disease. You find 20 American elms and 20 Princeton elms, pick 50 leaves from each, and
measure the area of each leaf that was eaten by insects. Imagine that you find significantly
more insect damage on the Princeton elms than on the American elms (I have no idea if this
is true).

It could be that the genetic difference between the types of elm directly causes the
difference in the amount of insect damage. However, there are likely to be some important
confounding variables. For example, many American elms are many decades old, while the
Princeton strain of elms was made commercially available only recently and so any
Princeton elms you find are probably only a few years old. American elms are often treated
with fungicide to prevent Dutch elm disease, while this wouldn't be necessary for Princeton
elms. American elms in some settings (parks, streetsides, the few remaining in forests) may
receive relatively little care, while Princeton elms are expensive and are likely planted by
elm fanatics who take good care of them (fertilizing, watering, pruning, etc.). It is easy to
imagine that any difference in insect damage between American and Princeton elms could
be caused, not by the genetic differences between the strains, but by a confounding
variable: age, fungicide treatment, fertilizer, water, pruning, or something else.

Designing an experiment to eliminate differences due to confounding variables is
critically important. One way is to control all possible confounding variables. For example,
you could plant a bunch of American elms and a bunch of Princeton elms, then give them
all the same care (watering, fertilizing, pruning, fungicide treatment). This is possible for
many variables in laboratory experiments on model organisms.
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When it isn't practical to keep all the possible confounding variables constant, another
solution is to statistically control for them. You could measure each confounding variable
you could think of (age of the tree, height, sunlight exposure, soil chemistry, soil moisture,
etc.) and use a multivariate statistical technique to separate the effects of the different
variables. This is common in epidemiology, because carefully controlled experiments on
humans are often impractical and sometimes unethical. However, the analysis,
interpretation, and presentation of complicated multivariate analyses are not easy.

The third way to control confounding variables is to randomize them. For example, if
you are planting a bunch of elm trees in a field and are carefully controlling fertilizer,
water, pruning, etc., there may still be some confounding variables you haven't thought of.
One side of the field might be closer to a forest and therefore be exposed to more
herbivorous insects. Or parts of the field might have slightly different soil chemistry, or
drier soil, or be closer to a fence that insect-eating birds like to perch on. To control for
these variables, you should mix the American and Princeton elms throughout the field,
rather than planting all the American elms on one side and all the Princeton elms on the
other. There would still be variation among individuals in your unseen confounding
variables, but because it was randomized, it would not cause a consistent difference
between American and Princeton elms.

Random sampling
An important aspect of randomizing possible confounding variables is taking random

samples of a population. "Population," in the statistical sense, is different from a biological
population of individuals; it represents all the possible measurements of a particular
variable. For example, if you are measuring the fluorescence of a pH-sensitive dye inside a
kidney cell, the "population" could be the fluorescence at all possible points inside that cell.
Depending on your experimental design, the population could also be the fluorescence at
all points inside all of the cells of one kidney, or even the fluorescence at all points inside
all of the cells of all of the kidneys of that species of animal.

A random sample is one in which all members of a population have an equal
probability of being sampled. If you're measuring fluorescence inside kidney cells, this
means that all points inside a cell, and all the cells in a kidney, and all the kidneys in all the
individuals of a species, would have an equal chance of being sampled.

A perfectly random sample of observations is difficult to collect, and you need to think
about how this might affect your results. Let's say you've used a confocal microscope to
take a two-dimensional "optical slice" of a kidney cell. It would be easy to use a random-
number generator on a computer to pick out some random pixels in the image, and you
could then use the fluorescence in those pixels as your sample. However, if your slice was
near the cell membrane, your "random" sample would not include any points deep inside
the cell. If your slice was right through the middle of the cell, however, points deep inside
the cell would be over-represented in your sample. You might get a fancier microscope, so
you could look at a random sample of the "voxels" (three-dimensional pixels) throughout
the volume of the cell. But what would you do about voxels right at the surface of the cell?
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Including them in your sample would be a mistake, because they might include some of the
cell membrane and extracellular space, but excluding them would mean that points near the
cell membrane are under-represented in your sample.

As another example, let's say you want to estimate the amount of physical activity the
average University of Delaware undergrad gets. You plan to attach pedometers to 50
students and count how many steps each student takes during a week. If you stand on a
sidewalk and recruit students, one confounding variable would be where the sidewalk is. If
it's on North College Avenue, the primary route between the main campus and the remote
Christiana Towers dorms, your sample will include students who do more walking than
students who live closer to campus. Recruiting volunteers on a sidewalk near a student
parking lot, a bus stop, or the student health center could get you more sedentary students.
It would be better to pick students at random from the student directory and ask them to
volunteer for your study. However, motivation to participate would be a difficult
confounding variable to randomize; I'll bet that particularly active students who were proud
of their excellent physical condition would be more likely to volunteer for your study than
would students who spend all their time looking at great bands on MySpace and searching
YouTube for videos of cats. To get a truly random sample, you'd like to be able to make
everyone you chose randomly participate in your study, but they're people, so you can't.
Designing a perfectly controlled experiment involving people can be very difficult. Maybe
you could put pedometers on cats, instead--that would be pretty funny looking.
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Exact test for goodness-of-fit

The main goal of a statistical test is to answer the question, "What is the probability of
getting a result like my observed data, if the null hypothesis were true?" If it is very
unlikely to get the observed data under the null hypothesis, you reject the null hypothesis.

Most statistical tests take the following form:

1. Collect the data.
2. Calculate a number, the test statistic, that measures how far the observed data

deviate from the expectation under the null hypothesis.
3. Use a mathematical function to estimate the probability of getting a test statistic as

extreme as the one you observed, if the null hypothesis were true. This is the P-
value.

Exact tests, such as the exact test for goodness-of-fit, are different. There is no test
statistic; instead, the probability of obtaining the observed data under the null hypothesis is
calculated directly. This is because the predictions of the null hypothesis are so simple that
the probabilities can easily be calculated.

When to use it
You use the exact binomial test when you have one nominal variable with only two

values (such as male or female, left or right, green or yellow). The observed data are
compared with the expected data, which are some kind of theoretical expectation (such as a
1:1 sex ratio or a 3:1 ratio in a genetic cross) that is determined before the data are
collected. If the total number of observations is too high (around a thousand), computers
may not be able to do the calculations for the exact test, and a G-test or chi-square test of
goodness-of-fit must be used instead (and will give almost exactly the same result).

You can do exact multinomial tests of goodness-of-fit when the nominal variable has
more than two values. The basic concepts are the same as for the exact binomial test. Here
I'm limiting the explanation to the binomial test, because it's more commonly used and
easier to understand.

Null hypothesis
For a two-tailed test, which is what you almost always should use, the null hypothesis is

that the number of observations in each category is equal to that predicted by a biological
theory, and the alternative hypothesis is that the observed data are different from the
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expected. For example, if you do a genetic cross in which you expect a 3:1 ratio of green to
yellow pea pods, and you have a total of 50 plants, your null hypothesis is that there are
37.5 plants with green pods and 12.5 with yellow pods.

If you are doing a one-tailed test, the null hypothesis is that the observed number for
one category is equal to or less than the expected; the alternative hypothesis is that the
observed number in that category is greater than expected.

How the test works
Let's say you want to know whether our cat, Gus, has a preference for one paw or uses

both paws equally. You dangle a ribbon in his face and record which paw he uses to bat at
it. You do this 10 times, and he bats at the ribbon with his right paw 8 times and his left
paw 2 times. Then he gets bored with the experiment and leaves. Can you conclude that he
is right-pawed, or could this result have occurred due to chance under the null hypothesis
that he bats equally with each paw?

The null hypothesis is that each time Gus bats at the ribbon, the probability that he will
use his right paw is 0.5. The probability that he will use his right paw on the first time is
0.5. The probability that he will use his right paw the first time AND the second time is 0.5
x 0.5, or 0.52, or 0.25. The probability that he will use his right paw all ten times is 0.510,
or about 0.001.

For a mixture of right and left paws, the calculation is more complicated. Where n is
the total number of trials, k is the number of "successes" (statistical jargon for whichever
event you want to consider), p is the expected proportion of successes if the null hypothesis
is true, and Y is the probability of getting k successes in n trials, the equation is:

Y = pk(1-p)(n-k)n!
————————————

k!(n-k)!

Fortunately, there's an spreadsheet function that does the calculation for you. To calculate
the probability of getting exactly 8 out of 10 right paws, you would enter

=BINOMDIST(2, 10, 0.5, FALSE)

The first number, 2, is whichever event there are fewer than expected of; in this case,
there are only two uses of the left paw, which is fewer than the expected 10. The second
number is the total number of trials. The third number is the expected proportion of
whichever event there were fewer than expected of. And FALSE tells it to calculate the
exact probability for that number of events only. In this case, the answer is P=0.044, so you
might think it was significant at the P<0.05 level.

However, it would be incorrect to only calculate the probability of getting exactly 2 left
paws and 8 right paws. Instead, you must calculate the probability of getting a deviation
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Graph showing the probability distribution for the
binomial with 10 trials.

from the null expectation as large as, or larger than, the observed result. So you must
calculate the probability that Gus used his left paw 2 times out of 10, or 1 time out of 10, or
0 times out of ten. Adding these probabilities together gives P=0.055, which is not quite
significant at the P<0.05 level. You do this in a spreadsheet by entering

=BINOMDIST(2, 10, 0.5, TRUE).

The "TRUE" parameter tells the spreadsheet to calculate the sum of the probabilities of
the observed number and all more extreme values; it's the equivalent of

=BINOMDIST(2, 10, 0.5, FALSE)+BINOMDIST(1, 10, 0.5,
FALSE)+BINOMDIST(0, 10, 0.5, FALSE).

There's one more thing. The above calculation gives the total probability of getting 2, 1,
or 0 uses of the left paw out of 10. However, the alternative hypothesis is that the number
of uses of the right paw is not equal to the number of uses of the left paw. If there had been
2, 1, or 0 uses of the right paw, that also would have been an equally extreme deviation
from the expectation. So you must add the probability of getting 2, 1, or 0 uses of the right
paw, to account for both tails of the probability distribution; you are doing a two-tailed test.
This gives you P=0.109, which is not very close to being significant. (If the null hypothesis
had been 0.50 or more uses of the left paw, and the alternative hypothesis had been less
than 0.5 uses of left paw, you could do a one-tailed test and use P=0.054. But you almost
never have a situation where a one-tailed test is appropriate.)

The most common use of an exact
binomial test is when the null hypothesis
is that numbers of the two outcomes are
equal. In that case, the meaning of a two-
tailed test is clear, and the two-tailed P-
value is found by multiplying the one-
tailed P-value times two.

When the null hypothesis is not a 1:1
ratio, but something like a 3:1 ratio, the
meaning of a two-tailed exact binomial
test is not agreed upon; different
statisticians, and different statistical
programs, have slightly different
interpretations and sometimes give
different results for the same data. My
spreadsheet adds the probabilities of all

possible outcomes that are less likely than the observed numbers; this method of small P-
values is preferred by most statisticians.
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Examples
Mendel crossed pea plants that were heterozygotes for green pod/yellow pod; pod color

is the nominal variable, with "green" and "yellow" as the values. If this is inherited as a
simple Mendelian trait, with green dominant over yellow, the expected ratio in the
offspring is 3 green: 1 yellow. He observed 428 green and 152 yellow. The expected
numbers of plants under the null hypothesis are 435 green and 145 yellow, so Mendel
observed slightly fewer green-pod plants than expected. The P-value for an exact binomial
test is 0.533, indicating that the null hypothesis cannot be rejected; there is no significant
difference between the observed and expected frequencies of pea plants with green pods.

Roptrocerus xylophagorum is a parasitoid of bark beetles. To determine what cues
these wasps use to find the beetles, Sullivan et al. (2000) placed female wasps in the base
of a Y-shaped tube, with a different odor in each arm of the Y, then counted the number of
wasps that entered each arm of the tube. In one experiment, one arm of the Y had the odor
of bark being eaten by adult beetles, while the other arm of the Y had bark being eaten by
larval beetles. Ten wasps entered the area with the adult beetles, while 17 entered the area
with the larval beetles. The difference from the expected 1:1 ratio is not significant
(P=0.248). In another experiment that compared infested bark with a mixture of infested
and uninfested bark, 36 wasps moved towards the infested bark, while only 7 moved
towards the mixture; this is significantly different from the expected ratio (P=9×10-6).

Cambaroides japonicus is an endangered species of crayfish that is native to Japan.
Nakata and Goshima (2003) put a single male crayfish in an aquarium with a single shelter.
After 24 hours, they added a female crayfish and recorded whether the male kept the
shelter, or the female displaced the male from the shelter. They repeated this with 20 pairs
of crayfish. In 16 of the trials, the resident male was able to resist the intruder; in four trials,
the intruding female was able to displace the resident male. This is significantly different
from the expected 1:1 ratio (P=0.012).

Graphing the results
You plot the results of an exact test the same way would any other goodness-of-fit test.

Similar tests
A G-test or chi-square goodness-of-fit test could also be used for the same data as the

exact test of goodness-of-fit. Where the expected numbers are small, the exact test will give
more accurate results than the G-test or chi-squared tests. Where the sample size is large
(over a thousand), attempting to use the exact test may give error messages (computers
have a hard time calculating factorials for large numbers), so a G-test or chi-square test
must be used. For intermediate sample sizes, all three tests give approximately the same
results. I recommend that you use the exact test when n is less than 1000; see the web page
on small sample sizes for further discussion.

Handbook of Biological Statistics

24

http://udel.edu/~mcdonald/statchigof.html#gofgraph
http://udel.edu/~mcdonald/statgtestgof.html
http://udel.edu/~mcdonald/statchigof.html
http://udel.edu/~mcdonald/statsmall.html
http://udel.edu/~mcdonald/statsmall.html


The exact test and randomization test should give you the same result, if you do enough
replicates for the randomization test, so the choice between them is a matter of personal
preference. The exact test sounds more "exact"; the randomization test may be easier to
understand and explain.

The sign test is a particular application of the exact binomial test. It is usually used
when observations of a measurement variable are made in pairs (such as right-vs.-left or
before-vs.-after), and only the direction of the difference, not the size of the difference, is
of biological interest.

The exact test for goodness-of-fit is not the same as Fisher's exact test of independence.
A test of independence is used for two nominal variables, such as sex and location. If you
wanted to compare the ratio of males to female students at Delaware to the male:female
ratio at Maryland, you would use a test of independence; if you want to compare the
male:female ratio at Delaware to a theoretical 1:1 ratio, you would use a goodness-of-fit
test.

Power analysis
For the exact binomial test, you can do the power analysis with this power analysis for

proportions (http://www.dssresearch.com/toolkit/sscalc/size_p1.asp) web page. This web
page is set up for one-tailed tests, rather than the more common two-tailed tests, so enter
alpha = 2.5 instead of alpha = 5 percent. Note that if the null expectation is not a 1:1 ratio,
you will get slightly different results, depending on whether you make the observed
proportion smaller or larger than the expected; use whichever gives you a larger sample
size.

If your nominal variable has more than two values, use this power and sample size page
(http://www.stat.uiowa.edu/~rlenth/Power/index.html) . It is designed for chi-square tests,
not exact tests, but the sample sizes will be very close. Choose "Generic chi-square test"
from the box on the left side of the page (if you don't see the list of tests, make sure your
web browser has Java turned on). Under "Prototype data," enter the chi-square value and
sample size for some fake data. For example, if you're doing a genetic cross with an
expected 1:2:1 ratio, and your minimum effect size is 10 percent more heterozygotes than
expected, use the chi-square spreadsheet to do a chi-square test on observed numbers of
20:60:20 compared to expected proportions of 1:2:1. The spreadsheet gives you a chi-
square value of 4.00 and an n of 100, which you enter under "Prototype data". Then set d
(the degrees of freedom) equal to 2, and leave alpha at 0.05. The sliders can then be slid
back and forth to yield the desired result. For example, if you slide the Power to 0.90, n is
equal to 316. Note that the absolute values of the prototype data don't matter, only their
relative relationship; you could have used 200:600:200, which would give you a chi-square
value of 40.0 and an n of 1000, and gotten the exact same result.
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How to do the test
Spreadsheet

I have set up a spreadsheet that performs the exact binomial test (http://udel.edu/
~mcdonald/statexactbin.xls) for sample sizes up to 1000. It is self-explanatory.

Web page
Richard Lowry has set up a web page (http://faculty.vassar.edu/lowry/binomialX.html)

that does the exact binomial test. I'm not aware of any web pages that will do exact
multinomial tests.

SAS
Here is a sample SAS program, showing how to do the exact binomial test on the Gus

data. The p=0.5 gives the expected proportion of whichever value of the nominal variable
is alphabetically first; in this case, it gives the expected proportion of "left."

The SAS exact binomial function finds the two-tailed P-value by doubling the P-value
of one tail. The binomial distribution is not symmetrical when the expected proportion is
other than 50 percent, so the technique SAS uses isn't as good as the method of small P-
values. I don't recommend doing the exact binomial test in SAS when the expected
proportion is anything other than 50 percent.

data gus;
input paw $;
cards;

right
left
right
right
right
right
left
right
right
right
;
proc freq data=gus;

tables paw / binomial(p=0.5);
exact binomial;
run;

Near the end of the output is this:
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Exact Test
One-sided Pr <=  P           0.0547
Two-sided = 2 * One-sided    0.1094

The "Two-sided=2*One-sided" number is the two-tailed P-value that you want.
If you have the total numbers, rather than the raw values, you'd use a "weight"

parameter in PROC FREQ:

data gus;
input paw $ count;
cards;

right 10
left 2
;
proc freq data=gus;

weight count;
tables paw / binomial(p=0.5);

exact binomial;
run;

This example shows how do to the exact multinomial test. The numbers are Mendel's
data from a genetic cross in which you expect a 9:3:3:1 ratio of peas that are round+yellow,
round+green, wrinkled+yellow, and wrinkled+green. The order=data option tells SAS
to analyze the data in the order they are input (rndyel, rndgrn, wrnkyel, wrnkgrn, in this
case), not alphabetical order. The testp=(0.5625 0.1875 0.0625 0.1875) lists
the expected proportions in the same order.

data peas;
input color $ count;
cards;

rndyel 315
rndgrn 108
wrnkyel 101
wrnkgrn 32
;
proc freq data=peas order=data;

weight count;
tables color / chisq testp=(0.5625 0.1875 0.1875 0.0625);
exact chisq;

run;
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The P-value you want is labelled "Exact Pr >= ChiSq":

Chi-Square Test
for Specified Proportions
-------------------------------------
Chi-Square                     0.4700
DF                                  3
Asymptotic Pr >  ChiSq         0.9254
Exact      Pr >= ChiSq         0.9272

Further reading
Sokal and Rohlf, pp. 686-687.

Zar, pp. 533-538.

References
Mendel, G. 1865. Experiments in plant hybridization. available at MendelWeb.

(http://www.mendelweb.org/Mendel.html)

Nakata, K., and S. Goshima. 2003. Competition for shelter of preferred sizes between the
native crayfish species Cambaroides japonicus and the alien crayfish species
Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and
body size. J. Crust. Biol. 23: 897-907.

Sullivan, B.T., E.M. Pettersson, K.C. Seltmann, and C.W. Berisford. 2000. Attraction of
the bark beetle parasitoid Roptrocerus xylophagorum (Hymenoptera: Pteromalidae) to
host-associated olfactory cues. Env. Entom. 29: 1138-1151.
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Power analysis

When you are designing an experiment, it is a good idea to estimate the sample size
you'll need. This is especially true if you're proposing to do something painful to humans or
other vertebrates, where it is particularly important to minimize the number of individuals
(without making the sample size so small that the whole experiment is a waste of time and
suffering), or if you're planning a very time-consuming or expensive experiment. Methods
have been developed for many statistical tests to estimate the sample size needed to detect a
particular effect, or to estimate the size of the effect that can be detected with a particular
sample size.

The problem with these techniques is that they require an accurate estimate of the size
of the difference you are looking for (the "effect size"), and (for measurement variables) an
accurate estimate of the standard deviation. When doing basic biological research, you
usually don't know how big a difference you're looking for; if you knew how big the
difference would be, you wouldn't need to do the experiment. In addition, even if you have
enough preliminary data to estimate the standard deviation of a measurement variable,
there's no guarantee it will be the same when you do a new experiment. You should do a
power analysis when designing an experiment, but you should take the results with a large
grain of salt.

Parameters
There are four or five numbers involved in a power analysis. The minimum effect size

is the minimum difference you hope to detect. For example, if you are treating hens with
something that you hope will change the sex ratio of their chicks, you might decide that the
minimum change in the proportion of sexes that you're looking for is 10 percent. The
minimum effect size is often just a nice round number of no particular meaning, which is
one reason you should be skeptical of power analyses.

Alpha is the significance level of the test (the P-value), the probability of rejecting the
null hypothesis even though it is true (a false positive). The usual value is alpha=0.05. Beta,
in a power analysis, is the probabilty of accepting the null hypothesis, even though it is
false (a false negative), when the real difference is equal to the minimum effect size. There
is no firm rule about what value of beta to use; 50 percent or 20 percent or 10 percent seem
fairly common. The power of a test is the probability of rejecting the null hypothesis when
the real difference is equal to the minimum effect size, or 1−beta.
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For measurement variables, you also need an estimate of the standard deviation. This
can come from pilot experiments or from similar experiments in the published literature.
Your standard deviation once you do the experiment is unlikely to be the same, which is
another reason to be skeptical of power analyses. For nominal variables, the standard
deviation is a simple function of the sample size, so you don't need to estimate it separately.

On most web pages that do power analyses, you can either enter the desired power and
estimate the sample size needed, or enter the sample size and estimate the power. If the
effect size is really the minimum specified, and the standard deviation is as specified, the
probability that this sample size will give a significant result (at the P<alpha level) is
1−beta, and the probability that it won't give a significant result is beta.

The equations for estimating sample size from alpha, beta, standard deviation, and
minimum effect size can be quite complicated. Fortunately, there are online calculators for
doing power analyses for many statistical tests. I'll try to put a link for power analysis on
the web page for each statistical test.

How it works
The details of a power analysis are different for different statistical tests, but the basic

concepts are similar; here I'll use the exact binomial test as an example. Imagine that you
are studying wrist fractures, and your null hypothesis is that half the people who break one
wrist break their right wrist, and half break their left. You decide that the minimum effect
size is 10 percent; if the percentage of people who break their right wrist is 60 percent or
more, or 40 percent or less, you want to have a significant result from the exact binomial
test. Alpha is 5 percent, as usual. You want beta to be 10 percent, which means that if the
percentage of broken right wrists is 40 percent or 60 percent, you want a sample size that
will yield a significant (P<0.05) result 90 percent of the time, and a non-significant result
(which would be a false negative in this case) only 10 percent of the time.
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The first graph shows the probability distribution under the null hypothesis, with a
sample size of 50 individuals. In order to be significant at the P<0.05 level, the observed
result would have to be less than 36 percent or more than 64 percent of people breaking
their right wrists. As the second graph shows, if the true percentage is 40 percent, the
sample data will be this extreme only 21 percent of the time. Obviously, a sample size of
50 is too small for this experiment; it would only yield a significant result 21 percent of the
time, even if there's a 40:60 ratio of broken right wrists to left wrists.
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The next graph shows the probability distribution under the null hypothesis, with a
sample size of 270 individuals. In order to be significant at the P<0.05 level, the observed
result would have to be less than 43.7 percent or more than 56.3 percent of people breaking
their right wrists. As the second graph shows, if the true percentage is 40 percent, the
sample data will be this extreme 90 percent of the time. A sample size of 270 is pretty good
for this experiment; it would yield a significant result 90 percent of the time if there's a
40:60 ratio of broken right wrists to left wrists.

Examples
You plan to cross peas that are heterozygotes for Yellow/green pea color, where

Yellow is dominant. The expected ratio in the offspring is 3 Yellow: 1 green. You want to
know whether yellow peas are actually more or less fit, which might show up as a different
proportion of yellow peas than expected. You arbitrarily decide that you want a sample
size that will detect a significant (P<0.05) difference if there are 3 percent more or fewer
yellow peas than expected, with a beta (probability of false negatives) of 10 percent. You
will test the data using the exact binomial test for goodness-of-fit if the sample size is small
enough, or a G-test for goodness-of-fit if the sample size is larger. The power analysis is
the same for both tests.

Go to the power analysis for proportions (http://www.dssresearch.com/toolkit/sscalc/
size_p1.asp) web page. Enter 75 percent for "Test value" (the expected proportion of
yellow peas under the null hypothesis) and enter 72 percent for "Sample percentage" (3
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percent fewer yellow peas). Enter 2.5 percent for "Alpha error level," because this
particular web page is set up for one-tailed tests, and you're doing the more common two-
tailed test. Enter 10 percent for "Beta error level," then click on "Calculate sample size."
The result is 2253. That's a lot of peas! Note that, because the confidence intervals on a
percentage are not symmetrical, the results are different if you enter 78 percent for "Sample
percentage"; you should try it both ways and use the larger sample size result.

The example data for Student's t-test shows that the average height in the 2 p.m. section
of Biological Data Analysis was 66.6 inches and the average height in the 5 p.m. section
was 64.6 inches, but the difference is not significant (P=0.207). To figure out how much
bigger the samples would have to be for this difference to be significant, go to the power
analysis for t-tests (http://www.dssresearch.com/toolkit/sscalc/size_a2.asp) web page. Enter
66.6 and 64.6 for the average values for samples 1 and 2. Using the STDEV function in
Excel, calculate the standard deviation for each sample; it is 4.8 for sample 1 and 3.6 for
sample 2. Enter 5 percent for alpha and 10 percent for beta. The result is 308, meaning that
if 5 p.m. students really were two inches shorter than 2 p.m. students, you'd need 308
students in each class to detect a significant difference 90 percent of the time.

Further reading
Sokal and Rohlf, pp. 167-169.

Zar, p. 83.
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Chi-square test for goodness-of-
fit

The chi-square test for goodness-of-fit is an alternative to the G-test for goodness-of-fit.
Most of the information on this page is identical to that on the G-test page. You should read
the section on "Chi-square vs. G-test" near the bottom of this page, pick either chi-square
or G-test, then stick with that choice for the rest of your life.

When to use it
Use the chi-square test for goodness-of-fit when you have one nominal variable with

two or more values (such as red, pink and white flowers). The observed counts of numbers
of observations in each category are compared with the expected counts, which are
calculated using some kind of theoretical expectation (such as a 1:1 sex ratio or a 1:2:1
ratio in a genetic cross).

If the expected number of observations in any category is too small, the chi-square test
may give inaccurate results, and an exact test or a randomization test should be used
instead. See the web page on small sample sizes for further discussion.

Null hypothesis
The statistical null hypothesis is that the number of observations in each category is

equal to that predicted by a biological theory, and the alternative hypothesis is that the
observed numbers are different from the expected. The null hypothesis is usually an
extrinsic hypothesis, one for which the expected proportions are determined before doing
the experiment. Examples include a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross. Another
example would be looking at an area of shore that had 59% of the area covered in sand,
28% mud and 13% rocks; if seagulls were standing in random places, your null hypothesis
would be that 59% of the seagulls were standing on sand, 28% on mud and 13% on rocks.

In some situations, an intrinsic hypothesis is used. This is a null hypothesis in which the
expected proportions are calculated after the experiment is done, using some of the
information from the data. The best-known example of an intrinsic hypothesis is the Hardy-
Weinberg proportions of population genetics: if the frequency of one allele in a population
is p and the other allele is q, the null hypothesis is that expected frequencies of the three
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genotypes are p2, 2pq, and q2. This is an intrinsic hypothesis, because p and q are estimated
from the data after the experiment is done, not predicted by theory before the experiment.

How the test works
The test statistic is calculated by taking an observed number (O), subtracting the

expected number (E), then squaring this difference. The larger the deviation from the null
hypothesis, the larger the difference between observed and expected is. Squaring the
differences makes them all positive. Each difference is divided by the expected number,
and these standardized differences are summed. The test statistic is conventionally called a
"chi-square" statistic, although this is somewhat confusing (it's just one of many test
statistics that follows the chi-square distribution). The equation is

chi2 = ∑(O−E)2/E

As with most test statistics, the larger the difference between observed and expected,
the larger the test statistic becomes.

The distribution of the test statistic under the null hypothesis is approximately the same
as the theoretical chi-square distribution. This means that once you know the chi-square
test statistic, you can calculate the probability of getting that value of the chi-square
statistic.

The shape of the chi-square distribution depends on the number of degrees of freedom.
For an extrinsic null hypothesis (the much more common situation, where you know the
proportions predicted by the null hypothesis before collecting the data), the number of
degrees of freedom is simply the number of values of the variable, minus one. Thus if you
are testing a null hypothesis of a 1:1 sex ratio, there are two possible values (male and
female), and therefore one degree of freedom. This is because once you know how many of
the total are females (a number which is "free" to vary from 0 to the sample size), the
number of males is determined. If there are three values of the variable (such as red, pink,
and white), there are two degrees of freedom, and so on.

An intrinsic null hypothesis is one in which you estimate one or more parameters from
the data in order to get the numbers for your null hypothesis. As described above, one
example is Hardy-Weinberg proportions. For an intrinsic null hypothesis, the number of
degrees of freedom is calculated by taking the number of values of the variable, subtracting
1 for each parameter estimated from the data, then subtracting 1 more. Thus for Hardy-
Weinberg proportions with two alleles and three genotypes, there are three values of the
variable (the three genotypes); you subtract one for the parameter estimated from the data
(the allele frequency, p); and then you subtract one more, yielding one degree of freedom.

Examples: extrinsic hypothesis
Mendel crossed peas that were heterozygotes for Smooth/wrinkled, where Smooth is

dominant. The expected ratio in the offspring is 3 Smooth: 1 wrinkled. He observed 423
Smooth and 133 wrinkled.
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The expected frequency of Smooth is calculated by multiplying the sample size (556)
by the expected proportion (0.75) to yield 417. The same is done for green to yield 139.
The number of degrees of freedom when an extrinsic hypothesis is used is the number of
values of the nominal variable minus one. In this case, there are two values (Smooth and
wrinkled), so there is one degree of freedom.

The result is chi-square=0.35, 1 d.f., P=0.557, indicating that the null hypothesis cannot
be rejected; there is no significant difference between the observed and expected
frequencies.

Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a
managed forest, 54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5%
was grand fir, and 1% was western larch. They made 156 observations of foraging by red-
breasted nuthatches; 70 observations (45% of the total) in Douglas fir, 79 (51%) in
ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The biological null
hypothesis is that the birds forage randomly, without regard to what species of tree they're
in; the statistical null hypothesis is that the proportions of foraging events are equal to the
proportions of canopy volume. The difference in proportions is significant (chi-
square=13.593, 3 d.f., P=0.0035).

Example: intrinsic hypothesis
McDonald et al. (1996) examined variation at the CVJ5 locus in the American oyster,

Crassostrea virginica. There were two alleles, L and S, and the genotype frequencies in
Panacea, Florida were 14 LL, 21 LS, and 25 SS. The estimate of the L allele proportion
from the data is 49/120=0.408. Using the Hardy-Weinberg formula and this estimated
allele proportion, the expected genotype proportions are 0.167 LL, 0.483 LS, and 0.350 SS.
There are three classes (LL, LS and SS) and one parameter estimated from the data (the L
allele proportion), so there is one degree of freedom. The result is chi-square=4.54, 1 d.f.,
P=0.033, which is significant at the 0.05 level. We can reject the null hypothesis that the
data fit the expected Hardy-Weinberg proportions.

Graphing the results
If there are just two values of the nominal variable, you wouldn't display the result in a

graph, as that would be a bar graph with just one bar. Instead, you just report the
proportion; for example, Mendel found 23.9% wrinkled peas in his cross.

With more than two values of the nominal variable, you'd usually present the results of
a goodness-of-fit test in a table of observed and expected proportions. If the expected
values are obvious (such as 50%) or easily calculated from the data (such as
Hardy–Weinberg proportions), you can omit the expected numbers from your table. For a
presentation you'll probably want a graph showing both the observed and expected
proportions, to give a visual impression of how far apart they are. You should use a bar
graph for the observed proportions; the expected can be shown with a horizontal dashed
line, or with bars of a different pattern.
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Genotype proportions at the CVJ5 locus in
the American oyster. Horizontal dashed
lines indicate the expected proportions

under Hardy–Weinberg equilibrium; error
bars indicate 95% confidence intervals.

Genotype proportions at the CVJ5 locus
in the American oyster. Gray bars are

observed proportions, with 95%
confidence intervals; white bars are

expected proportions under
Hardy–Weinberg equilibrium.

One way to get the horizontal lines on the graph is to set up the graph with the observed
proportions and error bars, set the scale for the Y-axis to be fixed for the minimum and
maximum you want, and get everything formatted (fonts, patterns, etc.). Then replace the
observed proportions with the expected proportions in the spreadsheet; this should make
the columns change to represent the expected values. Using the spreadsheet drawing tools,
draw horizontal lines at the top of the columns. Then put the observed proportions back
into the spreadsheet. Of course, if the expected proportion is something simple like 25%,
you can just draw the horizontal line all the way across the graph.

Similar tests
The chi-square test of independence is used for two nominal variables, not one.
There are several tests that use chi-square statistics. The one described here is formally

known as Pearson's chi-square. It is by far the most common chi-square test, so it is usually
just called the chi-square test.

You have a choice of four goodness-of-fit tests: the exact binomial test or exact
multinomial test, the G-test of goodness-of-fit,, the chi-square test of goodness-of-fit, or the
randomization test. For small values of the expected numbers, the chi-square and G-tests
are inaccurate, because the distribution of the test statistics do not fit the chi-square
distribution very well.

The usual rule of thumb is that you should use the exact test or randomization test when
the smallest expected value is less than 5, and the chi-square and G-tests are accurate
enough for larger expected values. This rule of thumb dates from the olden days when
statistics were done by hand, and the calculations for the exact test were very tedious and to
be avoided if at all possible. Nowadays, computers make it just as easy to do the exact test
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or randomization test as the computationally simpler chi-square or G-test. I recommend
that you use the exact test or randomization test when the total sample size is less than
1000. See the web page on small sample sizes for further discussion.

Chi-square vs. G-test
The chi-square test gives approximately the same results as the G-test. Unlike the chi-

square test, G-values are additive, which means they can be used for more elaborate
statistical designs, such as repeated G-tests of goodness-of-fit. G-tests are a subclass of
likelihood ratio tests, a general category of tests that have many uses for testing the fit of
data to mathematical models; the more elaborate versions of likelihood ratio tests don't
have equivalent tests using the Pearson chi-square statistic. The G-test is therefore
preferred by many, even for simpler designs. On the other hand, the chi-square test is more
familiar to more people, and it's always a good idea to use statistics that your readers are
familiar with when possible. You may want to look at the literature in your field and see
which is more commonly used.

Power analysis
If your nominal variable has just two values, you can use this power analysis for

proportions (http://www.dssresearch.com/toolkit/sscalc/size_p1.asp) web page to do your
power analysis. This web page is set up for one-tailed tests, rather than the more common
two-tailed tests, so enter alpha = 2.5 instead of alpha = 5 percent. Note that you'll get
slightly different results, depending on whether you make the observed proportion smaller
or larger than the expected; use whichever gives you a larger sample size.

If your nominal variable has more than two values, use this power and sample size page
(http://www.stat.uiowa.edu/~rlenth/Power/index.html) . Choose "Generic chi-square test"
from the box on the left side of the page (if you don't see the list of tests, make sure your
web browser has Java turned on). Under "Prototype data," enter the chi-square value and
sample size for some fake data. For example, if you're doing a genetic cross with an
expected 1:2:1 ratio, and your minimum effect size is 10 percent more heterozygotes than
expected, use the chi-square spreadsheet to do a chi-square test on observed numbers of
20:60:20 compared to expected proportions of 1:2:1. The spreadsheet gives you a chi-
square value of 4.00 and an n of 100, which you enter under "Prototype data". Then set d
(the degrees of freedom) equal to 2, and leave alpha at 0.05. The sliders can then be slid
back and forth to yield the desired result. For example, if you slide the Power to 0.90, n is
equal to 316. Note that the absolute values of the prototype data don't matter, only their
relative relationship; you could have used 200:600:200, which would give you a chi-square
value of 40.0 and an n of 1000, and gotten the exact same result.
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How to do the test
Spreadsheet

I have set up aspreadsheet for the chi-square test of goodness-of-fit. (http://udel.edu/
~mcdonald/statchigof.xls) It is largely self-explanatory. It will calculate the degrees of
freedom for you if you're using an extrinsic null hypothesis; if you are using an intrinsic
hypothesis, you must enter the degrees of freedom into the spreadsheet.

Web pages
There are also web pages that will perform this test here (http://www.graphpad.com/

quickcalcs/chisquared2.cfm) , here (http://faculty.vassar.edu/lowry/csfit.html) , or here
(http://quantrm2.psy.ohio-state.edu/kris/chisq/chisq.htm) . None of these web pages lets
you set the degrees of freedom to the appropriate value for testing an intrinsic null
hypothesis.

SAS
Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the Mendel

pea data from above, and it assumes you've already counted the number of smooth and
wrinkled peas. The weight count; command tells SAS that the 'count' variable is the
number of times each value of 'texture' was observed. chisq tells SAS to do a chi-square
test, and testp=(75 25); tells it the expected percentages. The expected percentages
must add up to 100. The expected percentages are given for the values of 'texture' in
alphabetical order: 75 percent 'smooth', 25 percent 'wrinkled'.

data peas;
input texture $ count;
cards;

smooth 423
wrinkled 133
;
proc freq data=peas;

weight count;
tables texture / chisq testp=(75 25);

run;

Here's a SAS program that uses PROC FREQ for a chi-square test on raw data. I've
used three dots to indicate that I haven't shown the complete data set.

data peas;
input texture $;
cards;

smooth
wrinkled
smooth
smooth
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wrinkled
smooth

.

.

.
smooth
smooth
;
proc freq data=peas;

tables texture / chisq testp=(75 25);
run;

The output includes the following:

Chi-Square Test
for Specified Proportions
-------------------------
Chi-Square         0.3453
DF                      1
Pr > ChiSq         0.5568

You would report this as "chi-square=0.3453, 1 d.f., P=0.5568."

Further reading
Sokal and Rohlf, p. 701.

Zar, pp. 462-466.
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G-test for goodness-of-fit

The G-test for goodness-of-fit, also known as a likelihood ratio test for goodness-of-fit,
is an alternative to the chi-square test of goodness-of-fit. Most of the information on this
page is identical to that on the chi-square page. You should read the section on "Chi-square
vs. G-test" near the bottom of this page, pick either chi-square or G-test, then stick with
that choice for the rest of your life.

When to use it
Use the G-test for goodness-of-fit when you have one nominal variable with two or

more values (such as red, pink and white flowers). The observed counts of numbers of
observations in each category are compared with the expected counts, which are calculated
using some kind of theoretical expectation (such as a 1:1 sex ratio or a 1:2:1 ratio in a
genetic cross).

If the expected number of observations in any category is too small, the G-test may
give inaccurate results, and an exact test or a randomization test should be used instead. See
the web page on small sample sizes for further discussion.

Null hypothesis
The statistical null hypothesis is that the number of observations in each category is

equal to that predicted by a biological theory, and the alternative hypothesis is that the
observed numbers are different from the expected. The null hypothesis is usually an
extrinsic hypothesis, one for which the expected proportions are determined before doing
the experiment. Examples include a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross. Another
example would be looking at an area of shore that had 59% of the area covered in sand,
28% mud and 13% rocks; if seagulls were standing in random places, your null hypothesis
would be that 59% of the seagulls were standing on sand, 28% on mud and 13% on rocks.

In some situations, an intrinsic hypothesis is used. This is a null hypothesis in which the
expected proportions are calculated after the experiment is done, using some of the
information from the data. The best-known example of an intrinsic hypothesis is the Hardy-
Weinberg proportions of population genetics: if the frequency of one allele in a population
is p and the other allele is q, the null hypothesis is that expected frequencies of the three
genotypes are p2, 2pq, and q2. This is an intrinsic hypothesis, because p and q are estimated
from the data after the experiment is done, not predicted by theory before the experiment.
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How the test works
The test statistic is calculated by taking an observed number (O), dividing it by the

expected number (E), then taking the natural log of this ratio. The natural log of 1 is 0; if
the observed number is larger than the expected, ln(O/E) is positive, while if O is less than
E, ln(O/E) is negative. Each log is multiplied by the observed number, then these products
are summed and multiplied by 2. The test statistic is usually called G, and thus this is a G-
test, although it is also sometimes called a log-likelihood test or a likelihood ratio test. The
equation is

G=2∑[O×ln(O/E)]

As with most test statistics, the larger the difference between observed and expected,
the larger the test statistic becomes.

The distribution of the G-statistic under the null hypothesis is approximately the same
as the theoretical chi-square distribution. This means that once you know the G-statistic,
you can calculate the probability of getting that value of G using the chi-square
distribution.

The shape of the chi-square distribution depends on the number of degrees of freedom.
For an extrinsic null hypothesis (the much more common situation, where you know the
proportions predicted by the null hypothesis before collecting the data), the number of
degrees of freedom is simply the number of values of the variable, minus one. Thus if you
are testing a null hypothesis of a 1:1 sex ratio, there are two possible values (male and
female), and therefore one degree of freedom. This is because once you know how many of
the total are females (a number which is "free" to vary from 0 to the sample size), the
number of males is determined. If there are three values of the variable (such as red, pink,
and white), there are two degrees of freedom, and so on.

An intrinsic null hypothesis is one in which you estimate one or more parameters from
the data in order to get the numbers for your null hypothesis. As described above, one
example is Hardy-Weinberg proportions. For an intrinsic null hypothesis, the number of
degrees of freedom is calculated by taking the number of values of the variable, subtracting
1 for each parameter estimated from the data, then subtracting 1 more. Thus for Hardy-
Weinberg proportions with two alleles and three genotypes, there are three values of the
variable (the three genotypes); you subtract one for the parameter estimated from the data
(the allele frequency, p); and then you subtract one more, yielding one degree of freedom.

Examples: extrinsic hypothesis
Mendel crossed peas that were heterozygotes for Smooth/wrinkled, where Smooth is

dominant. The expected ratio in the offspring is 3 Smooth: 1 wrinkled. He observed 423
Smooth and 133 wrinkled.

The expected frequency of Smooth is calculated by multiplying the sample size (556)
by the expected proportion (0.75) to yield 417. The same is done for green to yield 139.
The number of degrees of freedom when an extrinsic hypothesis is used is the number of
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classes minus one. In this case, there are two classes (Smooth and wrinkled), so there is one
degree of freedom.

The result is G=0.35, 1 d.f., P=0.555, indicating that the null hypothesis cannot be
rejected; there is no significant difference between the observed and expected frequencies.

Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a
managed forest, 54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5%
was grand fir, and 1% was western larch. They made 156 observations of foraging by red-
breasted nuthatches; 70 observations (45% of the total) in Douglas fir, 79 (51%) in
ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The biological null
hypothesis is that the birds forage randomly, without regard to what species of tree they're
in; the statistical null hypothesis is that the proportions of foraging events are equal to the
proportions of canopy volume. The difference in proportions between observed and
expected is significant (G=13.145, 3 d.f., P=0.0043).

Example: intrinsic hypothesis
McDonald et al. (1996) examined variation at the CVJ5 locus in the American oyster,

Crassostrea virginica. There were two alleles, L and S, and the genotype frequencies in
Panacea, Florida were 14 LL, 21 LS, and 25 SS. The estimate of the L allele proportion
from the data is 49/120=0.408. Using the Hardy-Weinberg formula and this estimated
allele proportion, the expected genotype proportions are 0.167 LL, 0.483 LS, and 0.350 SS.
There are three classes (LL, LS and SS) and one parameter estimated from the data (the L
allele proportion), so there is one degree of freedom. The result is G=4.56, 1 d.f., P=0.033,
which is significant at the 0.05 level. You can reject the null hypothesis that the data fit the
expected Hardy-Weinberg proportions.

Graphing the results
If there are just two values of the nominal variable, you wouldn't display the result in a

graph, as that would be a bar graph with just one bar. Instead, you just report the
proportion; for example, Mendel found 23.9% wrinkled peas in his cross.

With more than two values of the nominal variable, you'd usually present the results of
a goodness-of-fit test in a table of observed and expected proportions. If the expected
values are obvious (such as 50%) or easily calculated from the data (such as
Hardy–Weinberg proportions), you can omit the expected numbers from your table. For a
presentation you'll probably want a graph showing both the observed and expected
proportions, to give a visual impression of how far apart they are. You should use a bar
graph for the observed proportions; the expected can be shown with a horizontal dashed
line, or with bars of a different pattern.
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Genotype proportions at the CVJ5 locus in
the American oyster. Horizontal dashed
lines indicate the expected proportions

under Hardy–Weinberg equilibrium; error
bars indicate 95% confidence intervals.

Genotype proportions at the CVJ5 locus
in the American oyster. Gray bars are

observed proportions, with 95%
confidence intervals; white bars are

expected proportions under
Hardy–Weinberg equilibrium.

One way to get the horizontal lines on the graph is to set up the graph with the observed
proportions and error bars, set the scale for the Y-axis to be fixed for the minimum and
maximum you want, and get everything formatted (fonts, patterns, etc.). Then replace the
observed proportions with the expected proportions in the spreadsheet; this should make
the columns change to represent the expected values. Using the spreadsheet drawing tools,
draw horizontal lines at the top of the columns. Then put the observed proportions back
into the spreadsheet. Of course, if the expected proportion is something simple like 25%,
you can just draw the horizontal line all the way across the graph.

Similar tests
The G-test of independence is used for two nominal variables, not one.
You have a choice of four goodness-of-fit tests: the exact binomial test or exact

multinomial test, the G-test of goodness-of-fit, the chi-square test of goodness-of-fit, or the
randomization test. For small values of the expected numbers, the chi-square and G-tests
are inaccurate, because the distribution of the test statistics do not fit the chi-square
distribution very well.

The usual rule of thumb is that you should use the exact test or randomization test when
the smallest expected value is less than 5, and the chi-square and G-tests are accurate
enough for larger expected values. This rule of thumb dates from the olden days when
statistics were done by hand, and the calculations for the exact test were very tedious and to
be avoided if at all possible. Nowadays, computers make it just as easy to do the exact test
or randomization test as the computationally simpler chi-square or G-test. I recommend
that you use the exact test or randomization test when the total sample size is less than
1000. See the web page on small sample sizes for further discussion.
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Chi-square vs. G-test
The chi-square test gives approximately the same results as the G-test. Unlike the chi-

square test, the G-values are additive, which means they can be used for more elaborate
statistical designs, such as repeated G-tests of goodness-of-fit.. The G-test is therefore
preferred by many, even for simpler designs where the additivity is not important. On the
other hand, the chi-square test is more familiar to more people, and it's always a good idea
to use statistics that your readers are familiar with when possible.

Power analysis
If your nominal variable has just two values, you do a power analysis with this power

analysis for proportions (http://www.dssresearch.com/toolkit/sscalc/size_p1.asp) web page.
This web page is set up for one-tailed tests, rather than the more common two-tailed tests,
so enter alpha = 2.5 instead of alpha = 5 percent. Note that you'll get slightly different
results, depending on whether you make the observed proportion smaller or larger than the
expected; use whichever gives you a larger sample size.

If your nominal variable has more than two values, use this power and sample size page
(http://www.stat.uiowa.edu/~rlenth/Power/index.html) . It is intended for chi-square tests,
not G-tests, but the results should be almost identical. Choose "Generic chi-square test"
from the box on the left side of the page (if you don't see the list of tests, make sure your
web browser has Java turned on). Under "Prototype data," enter the chi-square value and
sample size for some fake data. For example, if you're doing a genetic cross with an
expected 1:2:1 ratio, and your minimum effect size is 10 percent more heterozygotes than
expected, use the G-test spreadsheet to do a G-test on observed numbers of 20:60:20
compared to expected proportions of 1:2:1. The spreadsheet gives you a chi-square value of
4.03 and an n of 100, which you enter under "Prototype data". Then set d (the degrees of
freedom) equal to 2, and leave alpha at 0.05. The sliders can then be slid back and forth to
yield the desired result. For example, if you slide the Power to 0.90, n is equal to 314. Note
that the absolute values of the prototype data don't matter, only their relative relationship;
you could have used 200:600:200, which would give you a chi-square value of 40.0 and an
n of 1000, and gotten the exact same result.

How to do the test
Spreadsheet

I have set up a spreadsheet that does the G-test of goodness-of-fit (http://udel.edu/
~mcdonald/statgtestgof.xls) . It is largely self-explanatory. It will calculate the degrees of
freedom for you if you're using an extrinsic null hypothesis; if you are using an intrinsic
hypothesis, you must enter the degrees of freedom into the spreadsheet.

Web pages
I'm not aware of any web pages that will do a G-test of goodness-of-fit.
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SAS
Surprisingly, SAS does not have an option to do a G-test of goodness-of-fit; the manual

says the G-test is defined only for tests of independence, but this is incorrect.

Further reading
Sokal and Rohlf, pp. 699-701 (extrinsic hypothesis) and pp. 706-707 (intrinsic hypothesis).

Zar, pp. 473-475.
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Randomization test of
goodness-of-fit

When to use it
Use the randomization test of goodness of fit when you have one nominal variable

(such as red vs. pink vs. white flowers), and the sample size is too small to do the chi-
square test or the G-test of goodness-of-fit. An exact multinomial test would be just as
good as a randomization test; I include the randomization test here because you'll find it
difficult to do an exact multinomial test if you don't have access to SAS or another
statistical package, and because it provides a simple introduction to the important topic of
randomization-based tests (also known as Monte Carlo simulations).

The first step in doing a randomization test is to calculate the test statistic, in this case
the chi-square statistic. This is a measure of how far the observed numbers are from the
expected; a bigger deviation from the expected leads to a bigger chi-square statistic. When
doing a chi-square test, you use the relationship that under the null hypothesis, the chi-
square statistic approximately follows the mathematical chi-square distribution. With small
expected numbers, this approximate relationship is not very accurate, which is why the
randomization test is necessary.

For the spreadsheet and web page described here, the null hypothesis must be extrinsic
(such as an expected 1: 2: 1 ratio in a genetic cross), not intrinsic (such as the p2: 2pq: q2

Hardy-Weinberg proportions of population genetics). If you want to do a randomization
test with an intrinsic hypothesis, you will probably have to write a program yourself.

Null hypothesis
The statistical null hypothesis is that the number of observations in each category is

equal to that predicted by a biological theory, and the alternative hypothesis is that the
observed numbers are different from the expected. The null hypothesis is usually an
extrinsic hypothesis, one for which the expected proportions are determined before doing
the experiment. An example is a 1: 2: 1 ratio in a genetic cross.
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How the test works
Imagine you did a cross in which you expected a 1:2:1 ratio of red to pink to white

snapdragon flowers. You got only 8 offspring, so you expect 2 red, 4 pink, and 2 white, if
the null hypothesis is true; you actually got 5 red, 2 pink, and 1 white.

You calculate the chi-square statistic, which is 6.00. That is significant (P=0.0498), but
you know that the chi-square test can be inaccurate with such small expected numbers. So
you put one red ball, two pink balls, and one white ball in a hat. Without looking, you reach
in, grab a ball, and write down what color it is. You put the ball back in and repeat this
process until you've sampled 8 balls from a known 1:2:1 ratio. You calculate the chi-square
statistic for these numbers, and see whether it's as big or bigger than your observed chi-
square statistic of 6.00.

You repeat this process of randomly sampling 8 balls from a known 1:2:1 ratio, and see
how often you get a chi-square of 6.00 or larger. If you get a chi-square that large more
than 5 percent of the time, it tells you that if the null hypothesis is true, you'll get your
observed result (or something even more deviant from the null) more than 5 percent of the
time, so you can't reject the null hypothesis. If the randomization trials produce a chi-
square of 6.00 or larger less than 5 percent of the time, you reject the null hypothesis. For
these numbers (5 red, 2 pink, 1 white), I get P=0.0576 after 10,000 randomizations (done
on a computer, not with a hat), which is not significant.

Because it is taking a random sample of all possible combinations, the randomization
test will give slightly different estimates of the P-value every time you run it. The more
replicates you run, the more accurate your estimate of the P-value will be. You might want
to start with a small number of replicates, such as 1,000, to be sure everything is working
properly, then change the number of replicates to 100,000 or even 1,000,000 for your final
result.

This randomization test of goodness-of-fit is an example of an important technique in
statistics. Sometimes you want to estimate the probability of getting an observed result if a
null hypothesis is true (the P-value), and you have a test statistic that measures how far the
observations are from the expected, but there is no theoretical relationship between the test
statistic and the P-value. If you can simulate on a computer taking random samples from a
population that fits the null hypothesis, you can see how often the observed value of the test
statistic occurs, and therefore estimate the P-value. This technique is often called "Monte
Carlo simulation," because it's like selecting a bunch of random numbers with a roulette
wheel in the casino there. More elaborate Monte Carlo simulations usually require writing
a computer program or using specialized mathematical software, so they are beyond the
scope of this handbook, but you should be aware of the general concept.

Example
The red-breasted nuthatch example from the chi-square and G-test of goodness-of-fit

pages has some rather small expected numbers; under the null hypothesis, you'd only
expect 7.8 foraging events in grand fir and 1.6 events in western larch. The chi-square and
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G-tests might therefore be a little inaccurate, so it would be better to use a randomization
test. Using SAS to run one MILLION replicate randomizations, the proportion of chi-
square values for the randomly sampled data that were equal to or greater than the observed
chi-squared value (13.59) was only 0.0069; in other words, P=0.0069. This is somewhat
higher than the results for the chi-square test (P=0.035) or G-test (P=0.043), but it doesn't
change the conclusion, that the foraging events are signficantly different from randomly
distributed among the tree species.

Graphing the results
You plot the results of a randomization test of goodness-of-fit the same way you would

a chi-square test of goodness-of-fit.

Similar tests
You have a choice of four goodness-of-fit tests: the exact binomial test or exact

multinomial test, the G-test of goodness-of-fit,, the chi-square test of goodness-of-fit, or the
randomization test. For small values of the expected numbers, the chi-square and G-tests
are inaccurate, because the distribution of the test statistics do not fit the chi-square
distribution very well.

The usual rule of thumb is that you should use the exact test or randomization test when
the smallest expected value is less than 5, and the chi-square and G-tests are accurate
enough for larger expected values. This rule of thumb dates from the olden days when
statistics were done by hand, and the calculations for the exact test were very tedious and to
be avoided if at all possible. Nowadays, computers make it just as easy to do the exact test
or randomization test as the computationally simpler chi-square or G-test. I recommend
that you use the exact test or randomization test when the total sample size is less than
1000. See the web page on small sample sizes for further discussion.

The exact test and randomization test should give you the same result, if you do enough
replicates for the randomization test, so the choice between them is a matter of personal
preference. The exact test sounds more "exact"; the randomization test may be easier to
understand and explain. You can do the randomization test with a spreadsheet, web page,
or simple homemade computer program; the exact test may require a sophisticated statistics
program such as SAS.

Power analysis
I don't know how to do a precise power analysis for this test. Unless the numbers are

very, very small, the P-values are fairly similar to those for a chi-square test of goodness-
of-fit, so the power analysis described there should be adequate.
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How to do the test
Spreadsheet

I've put together a spreadsheet (http://udel.edu/~mcdonald/statrand.xls) that will
perform the randomization test of goodness-of-fit for up to 10 categories and up to 100
observations. It does 200 replicates at a time; to get a decent number of replicates, you
should copy the numbers from the cell labelled "reps. with greater chi-sq." into the row
labelled "enter reps. with greater chi-sq." By entering these numbers in this row alongside
each other, you can do up to 10,000 total replicates.

Web page
Go to this web page (http://faculty.vassar.edu/lowry/csfit.html) and enter your observed

numbers in the first column. If you had 5 red flowers, 2 pink flowers and 1 white flower in
a genetic cross, you would enter those numbers. You may then either enter the expected
numbers (2, 4 and 2) in the second column, or enter the expected proportions (0.25, 0.50,
and 0.25) in the third column.

Hit the Calculate button, and you'll get the chi-square test results; in this case, the chi-
square statistic is 6.00. Then scroll down and hit the 200 Random Samples button. The web
page will then use a random-number generator to choose a flower at random. The
probability of it choosing a red flower is 0.25, a pink flower 0.50, and a white flower 0.25.
It will do this for 8 flowers, then calculate the chi-square statistic for this simulated data
set. Then it will repeat this, for a total of 200 simulated data sets. You'll probably want to
do more that 200 replicates, to get a more accurate estimate of the P value; you should do at
least 1000, by hitting the 200 Random Samples button four more times, or maybe 10,000 if
you want publication-quality data.

SAS
To conduct a randomization test of goodness-of-fit in SAS, use the TABLES and

EXACT commands with the CHISQ and MC options. Here's an example using the
snapdragons. The testp=(25 50 25) option gives the expected percentages, which
must add up to 100; you could also use the proportions, 0.25, 0.50 and 0.25. The
order=data option tells SAS that theexpected values are given for the values of "color"
in the order they are input (red, pink, white).

data snapdragons;
input color $ observed;
cards;

red   5
pink  2
white 1
;
proc freq data=snapdragons order=data;

weight observed;
tables color / chisq testp=(25 50 25);
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exact chisq / mc n=100000;
run;

The output includes two p-values, one for the regular chi-square test and one for the
randomization test.

Chi-Square Test
for Specified Proportions

--------------------------------------
Chi-Square                      6.0000
DF                                   2
Asymptotic Pr > ChiSq           0.0498 Chi-square P-value
Monte Carlo Estimate for the Exact Test

Pr >= ChiSq                 0.0594 Randomization P-value
99% Lower Conf Limit        0.0575
99% Upper Conf Limit        0.0613

Number of Samples           100000

Further reading
Sokal and Rohlf, p. 810.
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Chi-square test of independence

The chi-square test may be used both as a test of goodness-of-fit (comparing
frequencies of one nominal variable to theoretical expecations) and as a test of
independence (comparing frequencies of one nominal variable for different values of a
second nominal variable). The underlying arithmetic of the test is the same; the only
difference is the way the expected values are calculated. However, goodness-of-fit tests and
tests of independence are used for quite different experimental designs and test different
null hypotheses, so I treat the chi-square test of goodness-of-fit and the chi-square test of
independence as two distinct statistical tests.

The chi-square test of independence is an alternative to the G-test of independence.
Most of the information on this page is identical to that on the G-test page. You should read
the section on "Chi-square vs. G-test", pick either chi-square or G-test, then stick with that
choice for the rest of your life.

When to use it
The chi-squared test of independence is used when you have two nominal variables,

each with two or more possible values. A data set like this is often called an "R×C table,"
where R is the number of rows and C is the number of columns. For example, if you
surveyed the frequencies of three flower phenotypes (red, pink, white) in four geographic
locations, you would have a 3×4 table. You could also consider it a 4×3 table; it doesn't
matter which variable is the columns and which is the rows.

It is also possible to do a chi-squared test of independence with more than two nominal
variables, but that experimental design doesn't occur very often and is rather complicated to
analyze and interpret, so I won't cover it.

Null hypothesis
The null hypothesis is that the relative proportions of one variable are independent of

the second variable; in other words, the proportions at one variable are the same for
different values of the second variable. In the flower example, the null hypothesis is that
the proportions of red, pink and white flowers are the same at the four geographic
locations.

For some experiments, you can express the null hypothesis in two different ways, and
either would make sense. For example, when an individual clasps their hands, there is one
comfortable position; either the right thumb is on top, or the left thumb is on top. Downey
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(1926) collected data on the frequency of right-thumb vs. left-thumb clasping in right-
handed and left-handed individuals. You could say that the null hypothesis is that the
proportion of right-thumb-clasping is the same for right-handed and left-handed
individuals, or you could say that the proportion of right-handedness is the same for right-
thumb-clasping and left-thumb-clasping individuals.

For other experiments, it only makes sense to express the null hypothesis one way. In
the flower example, it would make sense to say that the null hypothesis is that the
proportions of red, pink and white flowers are the same at the four geographic locations; it
wouldn't make sense to say that the proportion of flowers at each location is the same for
red, pink, and white flowers.

How the test works
The math of the chi-square test of independence is the same as for the chi-square test of

goodness-of-fit, only the method of calculating the expected frequencies is different. For
the goodness-of-fit test, a theoretical relationship is used to calculate the expected
frequencies. For the test of independence, only the observed frequencies are used to
calculate the expected. For the hand-clasping example, Downey (1926) found 190 right-
thumb and 149 left-thumb-claspers among right-handed women, and 42 right-thumb and 49
left-thumb-claspers among left-handed women. To calculate the estimated frequency of
right-thumb-claspers among right-handed women, you would first calculate the overall
proportion of right-thumb-claspers: (190+42)/(190+42+149+49)=0.5395. Then you would
multiply this overall proportion times the total number of right-handed women,
0.5395×(190+149)=182.9. This is the expected number of right-handed right-thumb-
claspers under the null hypothesis; the observed number is 190. Similar calculations would
be done for each of the cells in this 2×2 table of numbers.

The degrees of freedom in a test of independence are equal to (number of rows)−1 ×
(number of columns)−1. Thus for a 2×2 table, there are (2−1)×(2−1)=1 degree of freedom;
for a 4×3 table, there are (4−1)×(3−1)=6 degrees of freedom.

Examples
Gardemann et al. (1998) surveyed genotypes at an insertion/deletion polymorphism of

the apolipoprotein B signal peptide in 2259 men. Of men without coronary artery disease,
268 had the ins/ins genotype, 199 had the ins/del genotype, and 42 had the del/del
genotype. Of men with coronary artery disease, there were 807 ins/ins, 759 ins/del, and 184
del/del.

The two nominal variables are genotype (ins/ins, ins/del, or del/del) and disease (with
or without). The biological null hypothesis is that the apolipoprotein polymorphism doesn't
affect the likelihood of getting coronary artery disease. The statistical null hypothesis is
that the proportions of men with coronary artery disease are the same for each of the three
genotypes.
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The result is chi2=7.26, 2 d.f., P=0.027. This indicates that the null hypothesis can be
rejected; the three genotypes have significantly different proportions of men with coronary
artery disease.

Young and Winn (2003) counted sightings of the spotted moray eel, Gymnothorax
moringa, and the purplemouth moray eel, G. vicinus, in a 150-m by 250-m area of reef in
Belize. They identified each eel they saw, and classified the locations of the sightings into
three types: those in grass beds, those in sand and rubble, and those within one meter of the
border between grass and sand/rubble. The number of sightings are shown in the table, with
percentages in parentheses:

G. moringa     G. vicinus
Grass       127 (25.9)     116 (33.7)
Sand         99 (20.2)      67 (19.5)
Border      264 (53.9)     161 (46.8)

The nominal variables are the species of eel (G. moringa or G. vicinus and the habitat
type (grass, sand, or border). The difference in habitat use between the species is significant
(chi-square=6.26, 2 d.f., P=0.044).

Graphing the results
The data used in a test of independence are usually displayed with a bar graph, with the

values of one variable on the X-axis and the proportions of the other variable on the Y-axis.
If the variable on the Y-axis only has two values, you only need to plot one of them:

A bar graph for when the nominal variable has only two values.

If the variable on the Y-axis has more than two values, you should plot all of them.
Sometimes pie charts are used for this:
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A pie chart for when the nominal variable has
more than two values.

But as much as I like pie, I think pie charts make it difficult to see small differences in the
proportions. In this situation, I prefer bar graphs:

A bar graph for when the nominal variable has more
than two values.

Similar tests
There are several tests that use chi-square statistics. The one described here is formally

known as Pearson's chi-square. It is by far the most common chi-square test, so it is usually
just called the chi-square test.

If the expected numbers in some classes are small, the chi-squared test will give
inaccurate results. In that case, you should use Fisher's exact test if there are only two
variables with two classes in each. See the web page on small sample sizes for further
discussion.

Chi-square vs. G-test
The chi-square test gives approximately the same results as the G-test. Unlike the chi-

square test, G-values are additive, which means they can be used for more elaborate
statistical designs. G-tests are a subclass of likelihood ratio tests, a general category of tests
that have many uses for testing the fit of data to mathematical models; the more elaborate
versions of likelihood ratio tests don't have equivalent tests using the Pearson chi-square
statistic. The G-test is therefore preferred by many, even for simpler designs. On the other
hand, the chi-square test is more familiar to more people, and it's always a good idea to use
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statistics that your readers are familiar with when possible. You may want to look at the
literature in your field and see which is more commonly used.

Power analysis
For a 2×2 table with equal sample sizes, you can use this power analysis web page

(http://www.dssresearch.com/toolkit/sscalc/size_p2.asp) to do your power analysis. This
web page is set up for one-tailed tests, rather than the more common two-tailed tests, so
enter alpha = 2.5 instead of alpha = 5 percent. If you enter 50% for sample 1 percentage,
55% for sample two percentage, 2.5% for alpha and 10% for beta, the results will say
"Sample size = 2094 for both samples!" This means that each sample size would have to be
2094, or a total of 4188 in the two samples put together.

For a 2×2 table with unequal sample sizes, you can use this power analysis
(http://StatPages.org/proppowr.html) web page. This page is set up for two-tailed tests, so
enter alpha = 0.05. Enter power (which is 1−beta) instead of beta; if you want the
probability of a false negative (beta) to be 10 percent, enter 90 in the "power" box.

I don't know how to do a power analysis if one or both variables has more than two
values.

How to do the test
Spreadsheet

I have set up a spreadsheet (http://udel.edu/~mcdonald/statchiind.xls) that performs this
test for up to 10 columns and 50 rows. It is largely self-explanatory; you just enter you
observed numbers, and the spreadsheet calculates the chi-squared test statistic, the degrees
of freedom, and the P-value.

Web page
There are many web pages that do chi-squared tests of independence, but most are

limited to fairly small numbers of rows and columns. One page that will handle large data
sets is here (http://department.obg.cuhk.edu.hk/researchsupport/
RxC_contingency_table.asp) .

SAS
Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the

handclasping data from above.

data handclasp;
input thumb $ hand $ count;
cards;

rightthumb righthand 190
leftthumb  righthand 149
rightthumb lefthand   42
leftthumb  lefthand   49
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;
proc freq data=handclasp;

weight count;
tables thumb*hand / chisq;

run;

The output includes the following:

Statistics for Table of thumb by hand

Statistic                            DF       Value      Prob
-------------------------------------------------------------
Chi-Square                            1      2.8265    0.0927
Likelihood Ratio Chi-Square           1      2.8187    0.0932
Continuity Adj. Chi-Square            1      2.4423    0.1181
Cochran–Mantel–Haenszel Chi-Square    1      2.8199    0.0931
Phi Coefficient                                        0.0811
Contingency Coefficient                                0.0808
Cramer's V                                             0.0811

The "Chi-Square" on the first line is the P-value for the chi-square test; in this case, chi-
square=2.8265, 1 d.f., P=0.0927.

Further reading
Sokal and Rohlf, pp. 736-737.

Zar, pp. 486-500.

References
Downey, J.E. 1926. Further observations on the manner of clasping the hands. American
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G-test of independence

The G-test may be used both as a test of goodness-of-fit (comparing frequencies of one
nominal variable to theoretical expecations) and as a test of independence (comparing
frequencies of one nominal variable for different values of a second nominal variable). The
underlying arithmetic of the test is the same. Goodness-of-fit tests and tests of
independence are used for quite different experimental designs and test different null
hypotheses, so I treat the G-test of goodness-of-fit and the G-test of independence as two
distinct statistical tests.

The G-test of independence is an alternative to the chi-square test of independence.
Most of the information on this page is identical to that on the chi-square page. You should
read the section on "Chi-square vs. G-test", pick either chi-square or G-test, then stick with
that choice for the rest of your life.

When to use it
The G-test of independence is used when you have two nominal variables, each with

two or more possible values. A data set like this is often called an "R×C table," where R is
the number of rows and C is the number of columns. For example, if you surveyed the
frequencies of three flower phenotypes (red, pink, white) in four geographic locations, you
would have a 3×4 table. You could also consider it a 4×3 table; it doesn't matter which
variable is the columns and which is the rows.

It is also possible to do a G-test of independence with more than two nominal variables,
but that experimental design doesn't occur very often and is rather complicated to analyze
and interpret, so I won't cover it.

Null hypothesis
The null hypothesis is that the relative proportions of one variable are independent of

the second variable; in other words, the proportions at one variable are the same for
different values of the second variable. In the flower example, you would probably say that
the null hypothesis was that the proportions of red, pink and white were the same at the
four locations.

For some experiments, you can express the null hypothesis in two different ways, and
either would make sense. For example, when an individual clasps their hands, there is one
comfortable position; either the right thumb is on top, or the left thumb is on top. Downey
(1926) collected data on the frequency of right-thumb vs. left-thumb clasping in right-
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handed and left-handed individuals. You could say that the null hypothesis is that the
proportion of right-thumb-clasping is the same for right-handed and left-handed
individuals, or you could say that the proportion of right-handedness is the same for right-
thumb-clasping and left-thumb-clasping individuals.

For other experiments, it only makes sense to express the null hypothesis one way. In
the flower example, it would make sense to say that the null hypothesis is that the
proportions of red, pink and white flowers are the same at the four geographic locations; it
wouldn't make sense to say that the proportion of flowers at each location is the same for
red, pink, and white flowers.

How the test works
The math of the G-test of independence is the same as for the G-test of goodness-of-fit,

only the method of calculating the expected frequencies is different. For the goodness-of-fit
test, a theoretical relationship is used to calculate the expected frequencies. For the test of
independence, only the observed frequencies are used to calculate the expected. For the
hand-clasping example, Downey (1926) found 190 right-thumb and 149 left-thumb-
claspers among right-handed women, and 42 right-thumb and 49 left-thumb-claspers
among left-handed women. To calculate the estimated frequency of right-thumb-claspers
among right-handed women, you would first calculate the overall proportion of right-
thumb-claspers: (190+42)/(190+42+149+49)=0.5395. Then you would multiply this overall
proportion times the total number of right-handed women, 0.5395×(190+149)=182.9. This
is the expected number of right-handed right-thumb-claspers under the null hypothesis; the
observed number is 190. Similar calculations would be done for each of the cells in this
2×2 table of numbers.

(In practice, the calculations for the G-test of independence use shortcuts that don't
require calculating the expected frequencies; see Sokal and Rohlf, pp. 731-732.)

The degrees of freedom in a test of independence are equal to (number of rows)−1 ×
(number of columns)−1. Thus for a 2×2 table, there are (2−1)×(2−1)=1 degree of freedom;
for a 4×3 table, there are (4−1)×(3−1)=6 degrees of freedom.

Example
Gardemann et al. (1998) surveyed genotypes at an insertion/deletion polymorphism of

the apolipoprotein B signal peptide in 2259 men. Of men without coronary artery disease,
268 had the ins/ins genotype, 199 had the ins/del genotype, and 42 had the del/del
genotype. Of men with coronary artery disease, there were 807 ins/ins, 759 ins/del, and 184
del/del.

The biological null hypothesis is that the apolipoprotein polymorphism doesn't affect
the likelihood of getting coronary artery disease. The statistical null hypothesis is that the
proportions of men with coronary artery disease are the same for each of the three
genotypes.
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The result is G=7.30, 2 d.f., P=0.026. This indicates that the null hypothesis can be
rejected; the three genotypes have significantly different proportions of men with coronary
artery disease.

Young and Winn (2003) counted sightings of the spotted moray eel, Gymnothorax
moringa, and the purplemouth moray eel, G. vicinus, in a 150-m by 250-m area of reef in
Belize. They identified each eel they saw, and classified the locations of the sightings into
three types: those in grass beds, those in sand and rubble, and those within one meter of the
border between grass and sand/rubble. The number of sightings are shown in the table, with
percentages in parentheses:

G. moringa     G. vicinus
Grass       127 (25.9)     116 (33.7)
Sand         99 (20.2)      67 (19.5)
Border      264 (53.9)     161 (46.8)

The nominal variables are the species of eel (G. moringa or G. vicinus and the habitat
type (grass, sand, or border). The difference in habitat use between the species is significant
(G=6.23, 2 d.f., P=0.044).

Graphing the results
The data used in a test of independence are usually displayed with a bar graph, with the

values of one variable on the X-axis and the proportions of the other variable on the Y-axis.
If the variable on the Y-axis only has two values, you only need to plot one of them:

A bar graph for when the nominal variable has only two values.

If the variable on the Y-axis has more than two values, you should plot all of them.
Sometimes pie charts are used for this:
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A pie chart for when the nominal variable has
more than two values.

But as much as I like pie, I think pie charts make it difficult to see small differences in the
proportions. In this situation, I prefer bar graphs:

A bar graph for when the nominal variable has more
than two values.

Similar tests
If the expected numbers in some classes are small, the G-test will give inaccurate

results. In that case, you should use Fisher's exact test if there are only two variables with
two classes in each. See the web page on small sample sizes for further discussion.

Chi-square vs. G-test
The chi-square test gives approximately the same results as the G-test. Unlike the chi-

square test, G-values are additive, which means they can be used for more elaborate
statistical designs. G-tests are a subclass of likelihood ratio tests, a general category of tests
that have many uses for testing the fit of data to mathematical models; the more elaborate
versions of likelihood ratio tests don't have equivalent tests using the Pearson chi-square
statistic. The G-test is therefore preferred by many, even for simpler designs. On the other
hand, the chi-square test is more familiar to more people, and it's always a good idea to use
statistics that your readers are familiar with when possible. You may want to look at the
literature in your field and see which is more commonly used.
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Power analysis
For a 2×2 table with equal sample sizes, you can do a power analysis with this power

analysis web page (http://www.dssresearch.com/toolkit/sscalc/size_p2.asp) . This web page
is set up for one-tailed tests, rather than the more common two-tailed tests, so enter alpha =
2.5 instead of alpha = 5 percent. If you enter 50% for sample 1 percentage, 55% for sample
two percentage, 2.5% for alpha and 10% for beta, the results will say "Sample size = 2094
for both samples!" This means that each sample size would have to be 2094, or a total of
4188 in the two samples put together.

For a 2×2 table with unequal sample sizes, you can use this power analysis
(http://StatPages.org/proppowr.html) web page. This page is set up for two-tailed tests, so
enter alpha = 0.05. Enter power (which is 1 - beta) instead of beta; if you want the
probability of a false negative (beta) to be 10 percent, enter 90 in the "power" box.

I don't know how to do a power analysis if one or both variables has more than two
values.

How to do the test
Spreadsheet

I have set up an Excel spreadsheet (http://udel.edu/~mcdonald/statgtestind.xls) that
performs this test for up to 10 columns and 50 rows. It is largely self-explanatory; you just
enter you observed numbers, and the spreadsheet calculates the G-test statistic, the degrees
of freedom, and the P-value.

Web pages
I am not aware of any web pages that will do a G-test of independence.

SAS
Here is a SAS program that uses PROC FREQ for a G-test. It uses the handclasping

data from above.

data handclasp;
input thumb $ hand $ count;
cards;

rightthumb righthand 190
leftthumb  righthand 149
rightthumb lefthand   42
leftthumb  lefthand   49
;
proc freq data=handclasp;

weight count;
tables thumb*hand / chisq;

run;

The output includes the following:
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Statistics for Table of thumb by hand

Statistic                           DF       Value      Prob
------------------------------------------------------------
Chi-Square                           1      2.8265    0.0927
Likelihood Ratio Chi-Square          1      2.8187    0.0932
Continuity Adj. Chi-Square           1      2.4423    0.1181
Cochran–Mantel–Haenszel Chi-Square   1      2.8199    0.0931
Phi Coefficient                                       0.0811
Contingency Coefficient                               0.0808
Cramer's V                                            0.0811

The "Likelihood Ratio Chi-Square" is the P-value for the G-test; in this case, G=2.8187, 1
d.f., P=0.0932.

Further reading
Sokal and Rohlf, pp. 729-739.

Zar, pp. 505-506.

References
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Fisher's exact test of
independence

When to use it
Fisher's exact test is used when you have two nominal variables. A data set like this is

often called an "R×C table," where R is the number of rows and C is the number of
columns. Fisher's exact test is more accurate than the chi-squared test or G-test of
independence when the expected numbers are small. See the web page on small sample
sizes for further discussion.

The most common use of Fisher's exact test is for 2×2 tables, so that's mostly what I'll
describe here. You can do Fisher's exact test for greater than two rows and columns.

Null hypothesis
The null hypothesis is that the relative proportions of one variable are independent of

the second variable. For example, if you counted the number of male and female mice in
two barns, the null hypothesis would be that the proportion of male mice is the same in the
two barns.

How it works
The hypogeometric distribution is used to calculate the probability of getting the

observed data, and all data sets with more extreme deviations, under the null hypothesis
that the proportions are the same. For example, if one barn has 3 male and 7 female mice,
and the other barn has 15 male and 5 female mice, the probability of getting 3 males in the
first barn and 15 males in the second, or 2 and 16, or 1 and 17, or 0 and 18, is calculated.
For the usual two-tailed test, the probability of getting deviations as extreme as the
observed, but in the opposite direction, is also calculated. This is an exact calculation of the
probability; unlike most statistical tests, there is no intermediate step of calculating a test
statistic whose probability is approximately known.

When there are more than two rows or columns, you have to decide how you measure
deviations from the null expectation, so you can tell what data sets would be more extreme
than the observed. The usual method is to calculate the chi-square statistic (formally, it's
the Pearson chi-square statistic) for each possible set of numbers, and those with chi-square
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values equal to or greater than the observed data are considered as extreme as the observed
data.

(Note—Fisher's exact test assumes that the row and column totals are fixed. An example would
be putting 12 female hermit crabs and 9 male hermit crabs in an aquarium with 7 red snail shells
and 14 blue snail shells, then counting how many crabs of each sex chose each color. The total
number of female crabs is fixed at 12, and the total number of male crabs, red shells, and blue shells
are also fixed. There are few biological experiments where this assumption is true. In the much
more common design, the row totals and/or column totals are free to vary. For example, if you took
a sample of mice from two barns and counted the number of males and females, you wouldn't know
the total number of male mice before doing the experiment; it would be free to vary. In this case,
the Fisher's exact test is not, strictly speaking, exact. It is still considered to be more accurate than
the chi-square or G-test, and you should feel comfortable using it for any test of independence with
small numbers.)

Examples
McDonald and Kreitman (1991) sequenced the alcohol dehydrogenase gene in several

individuals of three species of Drosophila. Varying sites were classified as synonymous
(the nucleotide variation does not change an amino acid) or amino acid replacements, and
they were also classified as polymorphic (varying within a species) or fixed differences
between species. The two nominal variables are thus synonymicity ("synonymous" or
"replacement") and fixity ("polymorphic" or "fixed"). In the absence of natural selection,
the ratio of synonymous to replacement sites should be the same for polymorphisms and
fixed differences. There were 43 synonymous polymorphisms, 2 replacement
polymorphisms, 17 synonymous fixed differences, and 7 replacement fixed differences.

synonymous replacement
polymorphisms 43 2
fixed 17 7

The result is P=0.0067, indicating that the null hypothesis can be rejected; there is a
significant difference in synonymous/replacement ratio between polymorphisms and fixed
differences.

The eastern chipmunk trills when pursued by a predator, possibly to warn other
chipmunks. Burke da Silva et al. (2002) released chipmunks either 10 or 100 meters from
their home burrow, then chased them (to simulate predator pursuit). Out of 24 female
chipmunks released 10 m from their burrow, 16 trilled and 8 did not trill. When released
100 m from their burrow, only 3 female chipmunks trilled, while 18 did not trill. Applying
Fisher's exact test, the proportion of chipmunks trilling is signficantly higher (P=0.0007)
when they are closer to their burrow.
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Custer and Galli (2002) flew a light plane to follow great blue herons (Ardea herodias)
and great egrets (Casmerodius albus) from their resting site to their first feeding site at
Peltier Lake, Minnesota, and recorded the type of substrate each bird landed on.

Heron   Egret
Vegetation    15      8
Shoreline     20      5
Water         14      7
Structures     6      1

Fisher's exact test yields P=0.54, so there is no evidence that the two species of birds use
the substrates in different proportions.

Graphing the results
You plot the results of Fisher's exact test the same way would any other test of

independence.

Similar tests
The chi-squared test of independence or the G-test of independence may be used on the

same kind of data as Fisher's exact test. When some of the expected values are small,
Fisher's exact test is more accurate than the chi-squared or G-test of independence. If all of
the expected values are very large, Fisher's exact test becomes computationally impractical;
fortunately, the chi-squared or G-test will then give an accurate result. See the web page on
small sample sizes for further discussion.

If the number of rows, number of columns, or total sample size become too large, the
program you're using may not be able to perform the calculations for Fisher's exact test in a
reasonable length of time, or it may fail entirely. If Fisher's doesn't work, you can use the
randomization test of independence.

Power analysis
Unless your numbers are very small, the power analysis described for the chi-square

test of independence should work well enough.

How to do the test
Spreadsheet

I've written a spreadsheet to perform Fisher's exact test for 2×2 tables. (http://udel.edu/
~mcdonald/statfishers.xls) It handles samples with the smaller column total less than 500.
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Web pages
Several people have created web pages that perform Fisher's exact test for 2×2 tables. I

like Øyvind Langsrud's web page for Fisher's exact test (http://www.matforsk.no/ola/
fisher.htm) . Just enter the numbers into the cells on the web page, hit the Compute button,
and get your answer. You should almost always use the "2-tail p-value" given by the web
page.

There is also a web page for Fisher's exact test for up to 6×6 tables
(http://www.physics.csbsju.edu/stats/exact_NROW_NCOLUMN_form.html) .

SAS
Here is a SAS program that uses PROC FREQ for a Fisher's exact test. It uses the

chipmunk data from above.

data chipmunk;
input distance $ sound $ count;
cards;

10m  trill   16
10m  notrill  8
100m trill    3
100m notrill 18
;
proc freq data=chipmunk;

weight count;
tables distance*sound / chisq;

run;

The output includes the following:

Fisher's Exact Test
----------------------------------
Cell (1,1) Frequency (F)        18
Left-sided Pr <= F          1.0000
Right-sided Pr >= F      4.321E-04

Table Probability (P)    4.012E-04
Two-sided Pr <= P        6.862E-04

The "Two-sided Pr <= P" is the two-tailed P-value that you want.
SAS automatically does Fisher's exact test for 2×2 tables. For greater numbers of rows

or columns, you add a line saying exact chisq;. Here is an example using the data on
heron and egret substrate use from above:

data birds;
input bird $ substrate $ count;
cards;

heron vegetation 15
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67

http://www.matforsk.no/ola/fisher.htm
http://www.matforsk.no/ola/fisher.htm
http://www.physics.csbsju.edu/stats/exact_NROW_NCOLUMN_form.html
http://www.physics.csbsju.edu/stats/exact_NROW_NCOLUMN_form.html


heron shoreline  20
heron water      14
heron structures  6
egret vegetation  8
egret shoreline   5
egret water       7
egret structures  1
;
proc freq data=birds;

weight count;
tables bird*substrate / chisq;
exact chisq;

run;

The results of the exact test are labelled "Exact Pr >= ChiSq"; in this case, P=0.5357.

Pearson Chi-Square Test
----------------------------------
Chi-Square                  2.2812
DF                               3
Asymptotic Pr >  ChiSq      0.5161
Exact      Pr >= ChiSq      0.5357

Further reading
Sokal and Rohlf, pp. 734-736.

Zar, pp. 543-555.

References
Burke da Silva, K., C. Mahan, and J. da Silva. 2002. The trill of the chase: eastern

chipmunks call to warn kin. J. Mammol. 83: 546-552.

Custer, C.M., and J. Galli. 2002. Feeding habitat selection by great blue herons and great
egrets nesting in east central Minnesota. Waterbirds 25: 115-124.

McDonald, J.H. and M. Kreitman. 1991. Adaptive protein evolution at the Adh locus in
Drosophila. Nature 351: 652-654.
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Randomization test of
independence

When to use it
The randomization test of independence is used when you have two nominal variables.

A data set like this is often called an "R×C table," where R is the number of rows and C is
the number of columns. The randomization test is more accurate than the chi-squared test
or G-test of independence when the expected numbers are small. See the web page on
small sample sizes for further discussion.

Fisher's exact test would be just as good as a randomization test, but there may be
situations where the computer program you're using can't handle the calculations required
for the Fisher's test.

Null hypothesis
The null hypothesis is that the relative proportions of one variable are independent of

the second variable. For example, if you counted the number of male and female mice in
two barns, the null hypothesis would be that the proportion of male mice is the same in the
two barns.

How it works
Fisher's exact test works by calculating the probabilities of all possible combinations of

numbers in an R×C table, then adding the probabilities of those combinations that are as
extreme or more extreme than the observed data. As R and C get larger, and as the total
sample size gets larger, the number of possible combinations increases dramatically, to the
point where a computer may have a hard time doing all the calculations in a reasonable
period of time.

The randomization test works by generating random combinations of numbers in the
R×C table, with the probability of generating a particular combination equal to its
probability under the null hypothesis. For each combination, the Pearson's chi-square
statistic is calculated. The proportion of these random combinations that have a chi-square
statistic equal to or greater than the observed data is the P-value.
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Because it is taking a random sample of all possible combinations, the randomization
test will give slightly different estimates of the P-value every time you run it. The more
replicates you run, the more accurate your estimate of the P-value will be. You might want
to start with a small number of replicates, such as 1,000, to be sure everything is working
properly, then change the number of replicates to 100,000 or even 1,000,000 for your final
result.

Examples
Custer and Galli (2002) flew a light plane to follow great blue herons (Ardea herodias)

and great egrets (Casmerodius albus) from their resting site to their first feeding site at
Peltier Lake, Minnesota, and recorded the type of substrate each bird landed on.

Heron   Egret
Vegetation    15      8
Shoreline     20      5
Water         14      7
Structures     6      1

A randomization test with 100,000 replicates yields P=0.54, so there is no evidence that the
two species of birds use the substrates in different proportions.

Young and Winn (2003) counted prey items in the stomach of the spotted moray eel,
Gymnothorax moringa, and the purplemouth moray eel, G. vicinus. They identified each
eel they saw, and classified the locations of the sightings into three types: those in grass
beds, those in sand and rubble, and those within one meter of the border between grass and
sand/rubble. The number of prey items are shown in the table:

G. moringa     G. vicinus
Slippery dick              10             6
Unidentified wrasses        3             7
Moray eels                  1             1
Squirrelfish                1             1
Unidentified fish           6             3
Oval urn crab              31            10
Emerald crab                3             2
Portunus crab spp.          1             0
Arrow crab                  1             0
Unidentified crabs         15             1
Spiny lobster               0             1
Octopus                     3             2
Unidentified                4             1

The nominal variables are the species of eel (G. moringa or G. vicinus and the prey
type. The difference in stomach contents between the species is not significant
(randomization test with 100,000 replicates, P=0.11).
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There are a lot of small numbers in this data set. If you pool the data into fish (the first
five species), crustaceans (crabs and lobster), and octopus+unidentified, the P-value from
100,000 randomizations is 0.029; G. moringa eat a higher proportion of crustaceans than G.
vicinus. Of course, it would be best to decide to pool the data this way before collecting the
data. If you decided to pool the numbers after seeing them, you'd have to make it clear that
you did that, writing something like "After seeing that many of the numbers were very
small when divided into individual species, we also analyzed the data after pooling into
fish, crustaceans, and other/unidentified."

Graphing the results
You plot the results of a randomization test the same way would any other test of

independence.

Similar tests
The chi-squared test of independence or the G-test of independence may be used on the

same kind of data as a randomization test of independence. When some of the expected
values are small, Fisher's exact test or the randomization test is more accurate than the chi-
squared or G-test of independence. If all of the expected values are very large, Fisher's
exact test and the randomization test become computationally impractical; fortunately, the
chi-squared or G-test will then give an accurate result. See the web page on small sample
sizes for further discussion.

If the number of rows, number of columns, or total sample size become too large, the
program you're using may not be able to perform the calculations for Fisher's exact test in a
reasonable length of time, or it may fail entirely. I'd try Fisher's test first, then do the
randomization test if Fisher's doesn't work.

Power analysis
Unless your numbers are very small, the power analysis described for the chi-square

test of independence should work well enough.

How to do the test
Spreadsheet

I haven't written a spreadsheet for this test.

Web pages
I don't know of a web page that will perform this test.

SAS
Here is a SAS program that uses PROC FREQ to do the randomization test of

independence. The example uses the data on heron and egret substrate use from above. In
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the statement exact chisq / mc n=100000, "mc" tells SAS to do randomization
(also known as Monte Carlo simulation), and "n=100000" tells it how many replicates to
run.

data birds;
input bird $ substrate $ count;
cards;

heron vegetation 15
heron shoreline  20
heron water      14
heron structures  6
egret vegetation  8
egret shoreline   5
egret water       7
egret structures  1
;
proc freq data=birds;

weight count;
tables bird*substrate / chisq;
exact chisq / mc n=100000;

run;

The results of the randomization test are labelled "Pr >= ChiSq"; in this case, P=0.5392.

Monte Carlo Estimate for the Exact Test

Pr >= ChiSq                 0.5392
99% Lower Conf Limit        0.5351
99% Upper Conf Limit        0.5432

Number of Samples           100000
Initial Seed             952082114

Reference
Custer, C.M., and J. Galli. 2002. Feeding habitat selection by great blue herons and great

egrets nesting in east central Minnesota. Waterbirds 25: 115-124.

Young, R.F., and H.E. Winn. 2003. Activity patterns, diet, and shelter site use for two
species of moray eels, Gymnothorax moringa and Gymnothorax vicinus, in Belize.
Copeia 2003: 44-55.

Handbook of Biological Statistics

72



Small numbers in chi-square
and G-tests

Chi-square and G-tests of goodness-of-fit or independence give inaccurate results when
the expected numbers are small. For example, if you observe 11 people with torn anterior
cruciate ligaments, and 9 have torn their right ACL and 2 have torn their left ACL, you
would compare the observed ratio to an expected 1:1 ratio to see if there's evidence that
people are more likely to tear one ACL than the other. The exact binomial test gives a P-
value of 0.065, the chi-square test of goodness-of-fit gives a P-value of 0.035, and the G-
test of goodness-of-fit gives a P-value of 0.028. If you analyzed the data using the chi-
square or G-test, you would conclude that people tear their right ACL significantly more
than their left ACL; if you used the exact binomial test, which is more accurate, the
evidence would not be quite strong enough to reject the null hypothesis.

When the sample sizes are too small, alternatives to the chi-square test or G-test are
recommended. However, how small is "too small"? The conventional rule of thumb is that
if all of the expected numbers are greater than 5, it's acceptable to use the chi-square or G-
test; if an expected number is less than 5, you should use an alternative, such as an exact
test or a randomization test for goodness-of-fit, or a Fisher's exact test of independence.

This rule of thumb is left over from the olden days, when the calculations necessary for
an exact test were exceedingly tedious and error-prone, and a randomization test would
have required flipping actual coins or rolling actual dice thousands of times. Now that we
have these new-fangled gadgets called computers, it's time to retire the "expected less than
5" rule. But what new rule should you use?

Here is a graph of relative P-values versus sample size. For each sample size, a pair of
numbers were found that would give a P-value for the exact binomial test (null hypothesis,
1:1 ratio) that was as close as possible to P=0.05 without going under it. For example, with
a sample size of 11, the numbers 9 and 2 give a P-value of 0.065. The chi-square test was
then done on these numbers, and the chi-square P-value was divided by the exact binomial
P-value. For 9 and 2, the chi-square P-value is 0.035, so the ratio is 0.035/0.065 = 0.54. In
other words, the chi-square test gives a P-value that is only 54 percent as large as the more
accurate exact binomial test. The G-test gives almost the same results as the chi-square test.
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P-values of chi-square tests, as a proportion of the P-value from the exact
binomial test.

Plotting these relative P-values vs. sample size , it is clear that the chi-square and G-
tests give P-values that are too low, even for sample sizes in the hundreds. This means that
if you use a chi-square or G-test of goodness-of-fit and the P-value is just barely
significant, you will reject the null hypothesis, even though the more accurate P-value of
the exact binomial test would be above 0.05. The results are similar for 2×2 tests of
independence; the chi-square and G-tests give P-values that are considerably lower than
that of the more accurate Fisher's exact test.

Yates' and William's corrections
One solution to this problem is to use Yates' correction for continuity, sometimes just

known as the continuity correction. To do this, you subtract 0.5 from each observed value
that is greater than the expected, add 0.5 to each observed value that is less than the
expected, then do the chi-square or G-test. This only applies to tests with one degree of
freedom: goodness-of-fit tests with only two categories, and 2×2 tests of independence. It
works quite well for goodness-of-fit, yielding P-values that are quite close to those of the
exact binomial. For tests of independence, Yates' correction yields P-values that are too
high.

Another correction that is sometimes used is Williams' correction. For a goodness-of-fit
test, Williams' correction is found by dividing the chi-square or G values by the following:

q=1+(a2−1)/6nv

where a is the number of categories, n is the total sample size, and v is the number of
degrees of freedom. For a test of independence with R rows and C columns, Williams'
correction is found by dividing the chi-square or G value by the following:
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q=1+(n{[1/(row 1 total)]+…+[1/(row R total)]}−1)(n{[1/(column 1
total)]+…[1/(column C total)]}−1)/ 6n(R−1)(C−1)

Unlike Yates' correction, it can be applied to tests with more than one degree of freedom.
For the numbers I've tried, it increases the P-value a little, but not enough to make it very
much closer to the more accurate P-value provided by the exact binomial or Fisher's exact
test.

Some software may apply the Yates' or Williams' correction automatically. When
reporting your results, be sure to say whether or not you used one of these corrections.

Pooling
When a variable has more than two categories, and some of them have small numbers,

it often makes sense to pool some of the categories together. For example, let's say you
want to compare the proportions of different kinds of ankle injuries in basketball players
vs. volleyball players, and your numbers look like this:

basketball volleyball
sprains 18 16
breaks 13 5

torn ligaments 9 7
cuts 3 5

puncture wounds 1 3
infections 2 0

The numbers for cuts, puncture wounds, and infections are pretty small, and this will
cause the P-value for your test of independence to be inaccurate. Having a large number of
categories with small numbers will also decrease the power of your test to detect a
significant difference; adding categories with small numbers can't increase the chi-square
value or G-value very much, but it does increase the degrees of freedom. It would therefore
make sense to pool some categories:

basketball volleyball
sprains 18 16
breaks 13 5

torn ligaments 9 7
other injuries 6 8

Depending on the question you're interested in, it might make sense to pool the data
further:
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basketball volleyball
orthopedic injuries 40 28

non-orthopedic injuries 6 8

It is important to make decisions about pooling before analyzing the data. In this case,
you might have known, based on previous studies, that cuts, puncture wounds, and
infections would be relatively rare and should be pooled. You could have decided before
the study to pool all injuries for which the total was 10 or fewer, or you could have decided
to pool all non-orthopedic injuries because they're just not biomechanically interesting.

Recommendations
Goodness-of-fit with two categories: Use the exact binomial test for sample sizes of

1000 or less. Spreadsheets, web pages and SAS should have no problem doing the exact
binomial test for sample sizes less than 1000, but they may not be able to handle the
calculations for larger sample sizes. For sample sizes greater than 1000, use the chi-square
or G-test of goodness-of-fit with Yates' correction (unless you are doing a replicated G-test
of goodness-of-fit, in which case you must use the G-test without any continuity
correction).

Goodness-of-fit with more than two categories: Use either exact tests or
randomization tests for sample sizes of 1000 or less. Try the exact tests first, but if the
program you're using can't handle it, use randomization tests. Use the chi-square or G-test
of goodness of fit for sample sizes greater than 1000. Don't use Williams' correction.
Consider pooling rare categories.

2×2 test of independence: Use Fisher's exact test for sample sizes up to 1000. Use the
chi-square or G-test of independence, with Yates' correction, for sample sizes greater than
1000.

Greater than 2×2 test of independence: Use either an exact test or randomization test
for total sample sizes of 1000 or less. Try the exact test first, but if the program you're
using can't handle it, use a randomization test. Use a chi-square or G-test of independence,
without Williams' correction, for sample sizes greater than 1000.

Further reading
Sokal and Rohlf, pp. 698-703, 729-730.

Zar, pp. 470, 504-505.
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Replicated G-tests of goodness-
of-fit

When to use it
Sometimes you'll do a goodness-of-fit experiment more than once; for example, you

might look at the fit to a 3:1 ratio of a genetic cross in more than one family, or fit to a 1:1
sex ratio in more than one population, or fit to a 1:1 ratio of broken right and left ankles on
more than one sports team. One question then is, should you analyze each experiment
separately, risking the chance that the small sample sizes will have insufficient power? Or
should you pool all the data, risking the chance that the different experiments gave different
results? This is when the additive property of the G-test of goodness-of-fit becomes
important, because you can do a replicated G-test of goodness-of-fit.

You use the replicated G-test of goodness of fit when you have two nominal variables
with two or more values (such as red vs. pink vs. white flowers for one variable), one of the
nominal variables represents different replicates of the same experiment (different days,
different locations, different pairs of parents), and the observed data are compared with an
extrinsic theoretical expectation (such as an expected 1: 2: 1 ratio in a genetic cross). I do
not know if this analysis would be appropriate with an intrinsic hypothesis, such as the p2:
2pq: q2 Hardy-Weinberg proportions of population genetics.

Null hypotheses
This technique tests four null hypotheses. The first statistical null hypothesis is that the

number of observations in each category is equal to that predicted by a biological theory,
and the alternative hypothesis is that the observed numbers are different from the expected.
This is the same null hypothesis as for a regular G-test of goodness-of-fit. This is tested for
each individual experiment. The second null hypothesis is that overall, the data from the
individual experiments fit the expectations. This null hypothesis is a bit difficult to grasp,
but being able to test it is the main value of doing a replicated G-test of goodness-of-fit.
The third null hypothesis is that the relative proportions are the same across the different
experiments; this is the same as the null hypothesis for a G-test of independence. The
fourth null hypothesis is that the pooled data set fits the expected proportions.
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How to do the test
First, do a G-test of goodness-of-fit for each individual data set. The resulting G-values

are the "individual G-values." Also record the number of degrees of freedom for each
individual data set; these are the "individual degrees of freedom." Even if nothing else is
significant, it is interesting if one or more of these tests are significant.

(Note: Some programs use "continuity corrections," such as the Yates correction or the
Williams correction, in an attempt to make G-tests more accurate for small sample sizes. Do not use
any continuity corrections when doing a replicated G-test, or the G-values will not add up properly.
My spreadsheet for G-tests of goodness-of-fit does not use any continuity corrections.)

Next, add up all the individual G-values to get the "total G-value", and add up the
individual degrees of freedom to get the "total degrees of freedom." Use the CHIDIST
function in Excel to find the P value for the total G-value with the total degrees of freedom.
For example, if your total G-value is 12.33 and your total degrees of freedom is 6, enter
"=CHIDIST(13.43, 6)". The result will be the P-value for the total G. If it is significant,
you can reject one null hypothesis, that all of the data from the different experiments fit the
expected ratio, but you cannot tell yet in what way the data are inconsistent with the
expected ratio.

Next, add up the number of observations in each class. For the genetic cross example,
you would add up the number of red flowers in all the crosses, all the pink flowers, and all
the white flowers. Do a G-test of goodness-of-fit on this pooled data set. This gives you the
"pooled G-value." The degrees of freedom is the "pooled degrees of freedom," and it is just
the number of classes minus one (the same as for a regular goodness-of-fit test). Find the P-
value using the CHIDIST function. The P-value for this test tells you whether the pooled
data set deviates significantly from the expected ratio.

Finally, subtract the pooled G-value from the total G-value, and subtract the pooled
degrees of freedom from the total degrees of freedom. This gives you the "heterogeneity G-
value" and "heterogeneity degrees of freedom." Find the P-value using the CHIDIST
function. If the heterogeneity G-value is significant, it means that the individual data sets
have significantly different ratios from each other. The heterogeneity G is the same as a G-
test of independence comparing the different ratios.

Interpretation
If the heterogeneity G-value is not significant, you can accept one null hypothesis (that

the replicates have the same ratios), pool the data and treat them as if they came from one
big experiment. Then you can use the pooled G-value to test the null hypothesis that the
data fit the expected ratio.

However, if the heterogeneity G-value is significant, you reject the null hypothesis that
the replicates have the same ratios. This means that you cannot pool the data and use the
pooled G-value to test anything; you shouldn't pool data sets that are significantly different
from each other. In this case, you would investigate the individual data sets more
thoroughly, starting by looking at the significance of the individual G-values and then

Handbook of Biological Statistics

78

http://udel.edu/~mcdonald/statgtestgof.xls
http://udel.edu/~mcdonald/statgtestind.html
http://udel.edu/~mcdonald/statgtestind.html


using more sophisticated methods that aren't described here (see Sokal and Rohlf 1995, pp.
722-724).

It won't happen very often, but it's possible that neither the heterogeneity G-value nor
the pooled G-value will be significant, but the total G-value will. This rather frustrating
result would mean that you could reject the hypothesis that the data all fit the theoretical
expectation, but you wouldn't know whether it was due to heterogeneity among the data
sets, an overall deviation, or some combination of the two.

Example
The imaginary data set shown below is the result of eight crosses of heterozygous red/

white flowers. The expected proportions of offspring are 0.25 red, 0.50 pink, and 0.25
white. The two nominal variables are color (red, pink, or white) and which cross it is.

Cross Red Pink White G-value d.f. P-value
A 28 56 27 0.03 2 0.986
B 29 56 15 5.98 2 0.050
C 23 53 17 2.73 2 0.256
D 30 60 12 11.16 2 0.004
E 29 49 37 3.49 2 0.174
F 27 46 19 1.40 2 0.497
G 32 52 33 1.46 2 0.481
H 32 58 16 6.38 2 0.041

total G 32.63 16 0.008
pooled 230 430 176 pooled G 7.89 2 0.019

heterogeneity G 24.74 14 0.037

The total G-value (32.63), found by summing the eight individual G-values, is
significant (P=0.008). This means that the data do not fit the expected 1:2:1 proportions in
some way. The pooled G-value (7.89), found by doing a G-test of goodness-of-fit on the
pooled data (230 red, 430 pink, 176 white), is significant (P=0.019), which might suggest
that there is an overall deviation from the expected proportions. However, the
heterogeneity G-value (24.74), found by subtracting the pooled G-value from the total G-
value, is also significant (P=0.037). This means that the eight crosses were significantly
different from each other in their ratios of red to pink to white, so it would be incorrect to
use the pooled G-value for any hypothesis test.

Similar tests
For replicated goodness-of-fit tests, you must use the G-test, not the chi-squared test.

Chi-squared values, although they are similar to G-values, do not add up the same way; the
heterogeneity chi-square plus the pooled chi-square does not equal the total of the
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individual chi-squares. You could do a chi-squared test of independence among the
replicates, then if that is not significant, pool the data and do a chi-squared goodness-of-fit
test. However, you would not be able to detect the kind of overall deviation that the total G-
value tests for.

Further reading
Sokal and Rohlf, pp. 715-724.
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Cochran–Mantel–Haenszel test
for repeated tests of

independence

When to use it
You use the Cochran–Mantel–Haenszel test (which is sometimes called the

Mantel–Haenszel test) for repeated tests of independence. There are three nominal
variables; you want to know whether two of the variables are independent of each other,
and the third variable identifies the repeats. The most common situation is that you have
multiple 2×2 tables of independence, so that's what I'll talk about here. There are versions
of the Cochran–Mantel–Haenszel test for any number of rows and columns in the
individual tests of independence, but I won't cover them.

For example, let's say you've found several hundred pink knit polyester legwarmers that
have been hidden in a warehouse since they went out of style in 1984. You decide to see
whether they reduce the pain of ankle osteoarthritis by keeping the ankles warm. In the
winter, you recruit 36 volunteers with ankle arthritis, randomly assign 20 to wear the
legwarmers under their clothes at all times while the other 16 don't wear the legwarmers,
then after a month you ask them whether their ankles are pain-free or not. With just the one
set of people, you'd have two nominal variables (legwarmers vs. control, pain-free vs.
pain), each with two values, so you'd analyze the data with Fisher's exact test.

However, let's say you repeat the experiment in the spring, with 50 new volunteers.
Then in the summer you repeat the experiment again, with 28 new volunteers. You could
just add all the data together and do Fisher's exact test on the 114 total people, but it would
be better to keep each of the three experiments separate. Maybe the first time you did the
experiment there was an overall higher level of ankle pain than the second time, because of
the different time of year or the different set of volunteers. You want to see whether there's
an overall effect of legwarmers on ankle pain, but you want to control for possibility of
different levels of ankle pain at the different times of year.
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Null hypothesis
The null hypothesis is that the two nominal variables that are tested within each

repetition are independent of each other; having one value of one variable does not mean
that it's more likely that you'll have one value of the second variable. For your imaginary
legwarmers experiment, the null hypothesis would be that the proportion of people feeling
pain was the same for legwarmer-wearers and non-legwarmer wearers, after controlling for
the time of year. The alternative hypothesis is that the proportion of people feeling pain
was different for legwarmer and non-legwarmer wearers.

Technically, the null hypothesis of the Cochran–Mantel–Haenszel test is that the odds ratios
within each repetition are equal to 1. The odds ratio is equal to 1 when the proportions are the same,
and the odds ratio is different from 1 when the proportions are different from each other. I think
proportions are easier to grasp than odds ratios, so I'll put everything in terms of proportions.

How it works
If the four numbers in a 2×2 test of independence are labelled like this:

a   b

c   d

and (a+b+c+d)=n, the equation for the Cochran–Mantel–Haenszel test statistic can be
written like this:

χ2MH = {|∑[a−(a+b)(a+c)/n]|−0.5}2
————————————————————————————
∑(a+b)(a+c)(b+d)(c+d)/(n3−n2)

The numerator contains the absolute value of the difference between the observed value
in one cell (a) and the expected value under the null hypothesis, (a+b)(a+c)/n, so the
numerator is the squared sum of deviations between the observed and expected values. It
doesn't matter how you arrange the 2×2 tables, any of the four values can be used as a. The
0.5 is subtracted as a continuity correction. The denominator contains an estimate of the
variance of the squared differences.

The test statistic, χ2
MH, gets bigger as the differences between the observed and

expected values get larger, or as the variance gets smaller (primarily due to the sample size
getting bigger). It is chi-square distributed with one degree of freedom.

Different sources present the formula for the Cochran–Mantel–Haenszel test in
different forms, but they are all algebraically equivalent. The formula I've shown here
includes the continuity correction (subtracting 0.5 in the numerator); sometimes the
Cochran–Mantel–Haenszel test is done without the continuity correction, so you should be
sure to specify whether you used it when reporting your results.
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Some statisticians recommend that you test the homogeneity of the odds ratios in the
different repeats, and if different repeats show significantly different odds ratios, you
shouldn't do the Cochran–Mantel–Haenszel test. In our arthritis-legwarmers example, they
would say that if legwarmers have a significantly different effect on pain in the different
seasons, you should analyze each experiment separately, rather than all together as the
Cochran–Mantel–Haenszel test does. The most common way to test the homogeneity of
odds ratios is with the Breslow–Day test, which I won't cover here.

Other statisticians will tell you that it's perfectly okay to use the
Cochran–Mantel–Haenszel test when the odds ratios are significantly heterogeneous. The
different recommendations depend on what your goal is. If your main goal is hypothesis
testing—you want to know whether legwarmers reduce pain, in our example—then the
Cochran–Mantel–Haenszel test is perfectly appropriate. A significant result will tell you
that yes, the proportion of people feeling ankle pain does depend on whether or not they're
wearing legwarmers. If your main goal is estimation—you want to estimate how well
legwarmers work and come up with a number like "people with ankle arthritis are 50% less
likely to feel pain if they wear fluorescent pink polyester knit legwarmers"—then it would
be inappropriate to combine the data using the Cochran–Mantel–Haenszel test. If
legwarmers reduce pain by 70% in the winter, 50% in the spring, and 30% in the summer,
it would be misleading to say that they reduce pain by 50%; instead, it would be better to
say that they reduce pain, but the amount of pain reduction depends on the time of year.

Examples
McDonald and Siebenaller (1989) surveyed allele frequencies at the Lap locus in the

mussel Mytilus trossulus on the Oregon coast. At four estuaries, samples were taken from
inside the estuary and from a marine habitat outside the estuary. There were three common
alleles and a couple of rare alleles; based on previous results, the biologically interesting
question was whether the Lap94 allele was less common inside estuaries, so all the other
alleles were pooled into a "non-94" class.

There are three nominal variables: allele (94 or non-94), habitat (marine or estuarine),
and area (Tillamook, Yaquina, Alsea, or Umpqua). The null hypothesis is that at each area,
there is no difference in the proportion of Lap94 alleles between the marine and estuarine
habitats, after controlling for area.

This table shows the number of 94 and non-94 alleles at each location. There is a
smaller proportion of 94 alleles in the estuarine location of each estuary when compared
with the marine location; we wanted to know whether this difference is significant.

marine  estuarine
Tillamook       94       56       69

non-94       40       77

Yaquina         94       61      257
non-94       57      301
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Alsea           94       73       65
non-94       71       79

Umpqua          94       71       48
non-94       55       48

Applying the formula given above, the numerator is 355.84, the denominator is 70.47,
so the result is χ2

MH=5.05, 1 d.f., P=0.025. You can reject the null hypothesis that the
proportion of Lap94 alleles is the same in the marine and estuarine locations.

Gagnon et al. (2007) studied elk use of wildlife underpasses on a highway in Arizona.
Using video surveillance cameras, they recorded each elk that started to cross under the
highway. When a car or truck passed over while the elk was in the underpass, they
recorded whether the elk continued through the underpass ("crossing") or turned around
and left ("retreat"). The overall traffic volume was divided into low (fewer than 4 vehicles
per minute) and high. There are three nominal variables: vehicle type (truck or car), traffic
volume (low or high), and elk behavior (crossing or retreat). The question is whether trucks
or cars are more likely to scare elk out of underpasses.

crossing    retreat
low traffic    car       287         57

truck      40         42

high traffic   car       237         52
truck      57         12

The result of the test is χ2
MH=24.39, 1 d.f., P=7.9×10-7. More elk are scared out of the

underpasses by trucks than by cars.

Graphing the results
To graph the results of a Cochran–Mantel–Haenszel test, pick one of the two values of

the nominal variable that you're observing and plot its proportions on a bar graph, using
bars of two different patterns.
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Lap94 allele proportions in the mussel Mytilus
trosulus at four bays in Oregon. Gray bars are
marine samples and empty bars are estuarine

samples. Error bars are 95% confidence
intervals.

Similar tests
Sometimes the Cochran–Mantel–Haenszel test is just called the Mantel–Haenszel test.

This is confusing, as there is also a test for homogeneity of odds ratios called the
Mantel–Haenszel test, and a Mantel–Haenszel test of independence for one 2×2 table.
Mantel and Haenszel (1959) came up with a fairly minor modification of the basic idea of
Cochran (1954), so it seems appropriate (and somewhat less confusing) to give Cochran
credit in the name of this test.

If you have at least six 2×2 tables, and you're only interested in the direction of the
differences in proportions, not the size of the differences, you could do a sign test. See the
sign test web page for an example of an experiment with a very similar design to the Lap in
Mytilus trossulus experiment described above, where because of the different biology of
the organism, a sign test was more appropriate.

The Cochran–Mantel–Haenszel test for nominal variables is analogous to a two-way
anova or paired t-test for a measurement variable, or a Wilcoxon signed-rank test for rank
data. In the arthritis-legwarmers example, if you measured ankle pain on a 10-point scale (a
measurement variable) instead of categorizing it as pain/no pain, you'd analyze the data
with a two-way anova.

How to do the test
Spreadsheet

I've written a spreadsheet to perform the Cochran–Mantel–Haenszel test.
(http://udel.edu/~mcdonald/statcmh.xls) It handles up to 50 2×2 tables (and you should be
able to modify it to handle more, if necessary).

Web pages
I'm not aware of any web pages that will perform the Cochran–Mantel–Haenszel test.
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SAS
Here is a SAS program that uses PROC FREQ for a Cochran–Mantel–Haenszel test. It

uses the mussel data from above. In the TABLES statement, the variable that labels the
repeats is listed first; in this case it is LOCATION.

data lap;
input location $ habitat $ allele $ count;
cards;

Tillamook marine         94     56
Tillamook estuarine      94     69
Tillamook marine     non-94     40
Tillamook estuarine  non-94     77
Yaquina   marine         94     61
Yaquina   estuarine      94    257
Yaquina   marine     non-94     57
Yaquina   estuarine  non-94    301
Alsea     marine         94     73
Alsea     estuarine      94     65
Alsea     marine     non-94     71
Alsea     estuarine  non-94     79
Umpqua    marine         94     71
Umpqua    estuarine      94     48
Umpqua    marine     non-94     55
Umpqua    estuarine  non-94     48
;
proc freq data=lap;

weight count;
tables location*habitat*allele / cmh;
run;

There is a lot of output, but the important part looks like this:

Cochran–Mantel–Haenszel Statistics (Based on Table Scores)

Statistic    Alternative Hypothesis    DF       Value      Prob
---------------------------------------------------------------

1        Nonzero Correlation        1      5.3209    0.0211
2        Row Mean Scores Differ     1      5.3209    0.0211
3        General Association        1      5.3209    0.0211

For repeated 2x2 tables, the three statistics are identical; they are the
Cochran–Mantel–Haenszel chi-square statistic, without the continuity correction. For
repeated tables with more than two rows or columns, the "general association" statistic is

Handbook of Biological Statistics

86



used when the values of the different nominal variables do not have an order (you cannot
arrange them from smallest to largest); you should use it unless you have a good reason to
use one of the other statistics.

Further reading
Sokal and Rohlf, pp. 764-766.
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Statistics of central tendency

All of the tests in the first part of this handbook have analyzed nominal variables. Data
from a nominal variable is summarized as a percentage or a proportion. For example, 76.1
percent (or 0.761) of the peas in one of Mendel's genetic crosses were smooth, and 23.9
percent were wrinkled. If you have the percentage and the sample size (556, for Mendel's
peas), you have all the information you need about the variable.

The rest of the tests in this handbook analyze measurement variables. Summarizing
data from a measurement variable is more complicated, and requires a number that
represents the "middle" of a set of numbers (known as a "statistic of central tendency" or
"statistic of location"), along with a measure of the "spread" of the numbers (known as a
"statistic of dispersion"). The arithmetic mean is the most common statistic of central
tendency, while the variance or standard deviation are usually used to describe the
dispersion.

The statistical tests for measurement variables assume that the probability distribution
of the observations fits the normal (bell-shaped) curve. If this is true, the distribution can be
accurately described by two parameters, the arithmetic mean and the variance. Because
they assume that the distribution of the variables can be described by these two parameters,
tests for measurement variables are called "parametric tests." If the distribution of a
variable doesn't fit the normal curve, it can't be accurately desribed by just these two
parameters, and the results of a parametric test may be inaccurate. In that case, the data are
usually converted to ranks and analyzed using a non-parametric test, which is less sensitive
to deviations from normality.

The normal distribution
Many measurement variables in biology fit the normal distribution fairly well.

According to the central limit theorem, if you have several different variables that each
have some distribution of values and add them together, the sum follows the normal
distribution fairly well. It doesn't matter what the shape of the distribution of the individual
variables is, the sum will still be normal. The distribution of the sum fits the normal
distribution more closely as the number of variables increases. The graphs below are
frequency histograms of 5,000 numbers. The first graph shows the distribution of a single
number with a uniform distribution between 0 and 1. The other graphs show the
distributions of the sums of two, three, or four random numbers.
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Histograms of sums of random numbers.

As you can see, as more random numbers are added together, the frequency distribution
of the sum quickly approaches a bell-shaped curve. This is analogous to a biological
variable that is the result of several different factors. For example, let's say that you've
captured 100 lizards and measured their maximum running speed. The running speed of an
individual lizard would be a function of its genotype at many genes; its nutrition as it was
growing up; the diseases it's had; how full its stomach is now; how much water it's drunk;
and how motivated it is to run fast on a lizard racetrack. Each of these variables might not
be normally distributed; the effect of disease might be to either subtract 10 cm/sec if it has
had lizard-slowing disease, or add 20 cm/sec if it has not; the effect of gene A might be to
add 25 cm/sec for genotype AA, 20 cm/sec for genotype Aa, or 15 cm/sec for genotype aa.
Even though the individual variables might not have normally distributed effects, the
running speed that is the sum of all the effects would be normally distributed.

If the different factors interact in a multiplicative, not additive, way, the distribution
will be log-normal. An example would be if the effect of lizard-slowing disease is not to
subtract 10 cm/sec from the total speed, but instead to multiply the total speed by 0.9. The
distribution of a log-normal variable will look like a bell curve that has been pushed to the
left, with a long tail going to the right. Taking the log of such a variable will produce a
normal distribution. This is why the log transformation is used so often.

Histograms of the product of four random numbers, without or with log transformation.

The figure above shows the frequency distribution for the product of four numbers,
with each number having a uniform random distribution between 0.5 and 1. The graph on
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the right shows the untransformed product; the graph on the left is the distribution of the
log-transformed products.

Different measures of central tendency
While the arithmetic mean is by far the most commonly used statistic of central

tendency, you should be aware of a few others.
Arithmetic mean: The arithmetic mean is the sum of the observations divided by the

number of observations. It is the most common statistic of central tendency, and when
someone says simply "the mean" or "the average," this is what they mean. It is often
symbolized by putting a bar over a letter; the mean of Y1, Y2, Y3,… is Y.

The arithmetic mean works well for values that fit the normal distribution. It is sensitive
to extreme values, which makes it not work well for data that are highly skewed. For
example, imagine that you are measuring the heights of fir trees in an area where 99
percent of trees are young trees, about 1 meter tall, that grew after a fire, and 1 percent of
the trees are 50-meter-tall trees that survived the fire. If a sample of 20 trees happened to
include one of the giants, the arithmetic mean height would be 3.45 meters; a sample that
didn't include a big tree would have a mean height of 1 meter. The mean of a sample would
vary a lot, depending on whether or not it happened to include a big tree.

In a spreadsheet, the arithmetic mean is given by the function AVERAGE(Ys), where
Ys represents a listing of cells (A2, B7, B9) or a range of cells (A2:A20) or both (A2, B7,
B9:B21). Note that spreadsheets only count those cells that have numbers in them; you
could enter AVERAGE(A1:A100), put numbers in cells A1 to A9, and the spreadsheet
would correctly compute the arithmetic mean of those 9 numbers. This is true for other
functions that operate on a range of cells.

Geometric mean: The geometric mean is the Nth root of the product of N values of Y;
for example, the geometric mean of 5 values of Y would be the 5th root of
Y1×Y2×Y3×Y4×Y5. It is given by the spreadsheet function GEOMEAN(Ys). The
geometric mean is used for variables whose effect is multiplicative. For example, if a tree
increases its height by 60 percent one year, 8 percent the next year, and 4 percent the third
year, its final height would be the initial height multiplied by 1.60×1.08 ×1.04=1.80.
Taking the geometric mean of these numbers (1.216) and multiplying that by itself three
times also gives the correct final height (1.80), while taking the arithmetic mean (1.24)
times itself three times does not give the correct final height. The geometric mean is
slightly smaller than the arithmetic mean; unless the data are highly skewed, the difference
between the arithmetic and geometric means is small.

If any of your values are zero or negative, the geometric mean will be undefined.
The geometric mean has some useful applications in economics, but it is rarely used in

biology. You should be aware that it exists, but I see no point in memorizing the definition.
Harmonic mean: The harmonic mean is the reciprocal of the arithmetic mean of

reciprocals of the values; for example, the harmonic mean of 5 values of Y would be
5/(1/Y1 + 1/Y2 + 1/Y3 + 1/Y4 + 1/Y5). It is given by the spreadsheet function
HARMEAN(Ys). The harmonic mean is less sensitive to a few large values than are the
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arithmetic or geometric mean, so it is sometimes used for highly skewed variables such as
dispersal distance. For example, if six birds set up their first nest 1.0, 1.4, 1.7, 2.1, 2.8, and
47 km from the nest they were born in, the arithmetic mean dispersal distance would be
9.33 km, the geometric mean would be 2.95 km, and the harmonic mean would be 1.90 km.

If any of your values are zero, the harmonic mean will be undefined.
I think the harmonic mean has some useful applications in engineering, but it is rarely

used in biology. You should be aware that it exists, but I see no point in memorizing the
definition.

Median: When the Ys are sorted from lowest to highest, this is the value of Y that is in
the middle. For an odd number of Ys, the median is the single value of Y in the middle of
the sorted list; for an even number, it is the arithmetic mean of the two values of Y in the
middle. Thus for a sorted list of 5 Ys, the median would be Y3; for a sorted list of 6 Ys, the
median would be the arithmetic mean of Y3 and Y4. The median is given by the
spreadsheet function MEDIAN(Ys).

The median is useful when dealing with highly skewed distributions. For example, if
you were studying acorn dispersal, you might find that the vast majority of acorns fall
within 5 meters of the tree, while a small number are carried 500 meters away by birds. The
arithmetic mean of the dispersal distances would be greatly inflated by the small number of
long-distance acorns. It would depend on the biological question you were interested in, but
for some purposes a median dispersal distance of 3.5 meters might be a more useful
statistic than a mean dispersal distance of 50 meters.

The second situation where the median is useful is when it is impractical to measure all
of the values, such as when you are measuring the time until something happens. For
example, you might be monitoring the hatching time of 99 treehopper eggs. If 90 eggs
hatched within a couple of weeks, while the remaining 9 eggs hatched after several months
or didn't hatch at all, it would be easy to determine the median (the time when the 50th egg
hatched) and difficult or impossible to determine the arithmetic mean.

Mode: This is the most common value in a data set. It requires that a continuous
variable be grouped into a relatively small number of classes, either by making imprecise
measurments or by grouping the data into classes. For example, if the heights of 25 people
were measured to the nearest millimeter, there would likely be 25 different values and thus
no mode. If the heights were measured to the nearest 5 centimeters, or if the original
precise measurements were grouped into 5-centimeter classes, there would probably be one
height that several people shared, and that would be the mode.

It is rarely useful to determine the mode of a set of observations, but it is useful to
distinguish between unimodal, bimodal, etc. distributions, where it appears that the
parametric frequency distribution underlying a set of observations has one peak, two peaks,
etc. The mode is given by the spreadsheet function MODE(Ys).

Example
The Maryland Biological Stream Survey used electrofishing to count the number of

individuals of each fish species in randomly selected 75-m long segments of streams in
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Maryland. Here are the numbers of blacknose dace, Rhinichthys atratulus, in streams of the
Rock Creek watershed:

Mill_Creek_1               76
Mill_Creek_2              102
North_Branch_Rock_Creek_1  12
North_Branch_Rock_Creek_2  39
Rock_Creek_1               55
Rock_Creek_2               93
Rock_Creek_3               98
Rock_Creek_4               53
Turkey_Branch             102

Here are the statistics of central tendency. In reality, you would rarely have any reason to
report more than one of these:

Arithmetic mean  70.0
Geometric mean   59.8
Harmonic mean    45.1
Median           76
Mode            102

How to calculate the statistics
Spreadsheet

I have made a descriptive statistics spreadsheet (http://udel.edu/~mcdonald/
statdescriptive.xls) that calculates the arithmetic, geometric and harmonic means, the
median, and the mode, for up to 1000 observations.

Web pages
This web page (http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/

Descriptive.htm) calculates arithmetic mean, median, and mode for up to 80 observations.
It also includes most of the other common descriptive statistics: range, variance, standard
deviation, coefficient of variation, and standard error of the mean.

This web page (http://graphpad.com/quickcalcs/CImean1.cfm) calculates arithmetic
mean and median for up to 10,000 observations. It also calculates standard deviation,
standard error of the mean, and confidence intervals.

This web page (http://www.ruf.rice.edu/~lane/stat_analysis/descriptive.html) calculates
arithmetic mean and median, along with range, variance, standard deviation, and standard
error of the mean. I don't know the maximum number of observations it can handle.

SAS
There are three SAS procedures that do descriptive statistics, PROC MEANS, PROC

SUMMARY, and PROC UNIVARIATE. I don't know why there are three. PROC
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UNIVARIATE will calculate a longer list of statistics, so you might as well use it. Here is
an example, using the fish data from above.

data fish;
input location $ dacenumber;
cards;

Mill_Creek_1               76
Mill_Creek_2              102
North_Branch_Rock_Creek_1  12
North_Branch_Rock_Creek_2  39
Rock_Creek_1               55
Rock_Creek_2               93
Rock_Creek_3               98
Rock_Creek_4               53
Turkey_Branch             102
;
proc univariate data=fish;
run;

There's a lot of output from PROC UNIVARIATE, including the arithmetic mean,
median, and mode:

Basic Statistical Measures

Location                    Variability

Mean      70.0000     Std Deviation           32.08582
Median    76.0000     Variance                    1030
Mode     102.0000     Range                   90.00000

Interquartile Range     45.00000

You can specify which variables you want the mean, median and mode of, using a
VAR statement. You can also get the statistics for just those values of the measurement
variable that have a particular value of a nominal variable, using a CLASS statement. This
example calculates the statistics for the length of mussels, separately for each of two
species, Mytilus edulis and M. trossulus.

data mussel;
input species $ length width;
cards;

edulis 49.0 11.0
tross  51.2  9.1
tross  45.9  9.4
edulis 56.2 13.2
edulis 52.7 10.7
edulis 48.4 10.4
tross  47.6  9.5
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tross  46.2  8.9
tross  37.2  7.1
;
proc univariate;

var length;
class species;

run;

Surprisingly, none of the SAS procedures calculate harmonic or geometric mean. There
are functions called HARMEAN and GEOMEAN, but they only calculate the means for a
list of variables, not all the values of a single variable.

Further reading
Sokal and Rohlf, pp. 39-47.

Zar, pp. 20-28.

Reference
Blacknose dace data from Maryland Biological Stream Survey

(http://www.dnr.state.md.us/streams/data/index.html) .
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Statistics of dispersion

Summarizing data from a measurement variable requires a number that represents the
"middle" of a set of numbers (known as a "statistic of central tendency" or "statistic of
location"), along with a measure of the "spread" of the numbers (known as a "statistic of
dispersion"). Statistics of dispersion are used to give a single number that describes how
compact or spread out a distribution of observations is. Although statistics of dispersion are
usually not very interesting by themselves, they form the basis of most statistical tests used
on measurement variables.

Range: This is simply the difference between the largest and smallest observations.
This is the statistic of dispersion that people use in everyday conversation, but it is not very
informative for statistical purposes. The range depends only on the largest and smallest
values, so that two sets of data with very different distributions could have the same range.
In addition, the range is expected to increase as the sample size increases; the more samples
you take, the greater the chance that you'll sample a very large or very small value.

There is no range function in spreadsheets; the range can be found by using
=MAX(Ys)−MIN(Ys), where Ys represents a set of cells. When you have a large data set,
it's a good idea to look at the minimum and maximum values; if they're ridiculously small
or large, they might be errors of some kind, such as a misplaced decimal point.

Sum of squares: This is not really a statistic of dispersion by itself, but it is mentioned
here because it forms the basis of the variance and standard deviation. Subtract the sample
mean from an observation and square this "deviate". Squaring the deviates makes all of the
squared deviates positive and has other statistical advantages. Do this for each observation,
then sum these squared deviates. This sum of the squared deviates from the mean is known
as the sum of squares. It is given by the spreadsheet function DEVSQ(Ys) (not by the
function SUMSQ).

Parametric variance: If you take the sum of squares and divide it by the number of
observations (n), you are computing the average squared deviation from the mean. As
observations get more and more spread out, they get farther from the mean, and the average
squared deviate gets larger. This average squared deviate, or sum of squares divided by n,
is the variance. You can only calculate the variance of a population this way if you have
observations for every member of a population, which is almost never the case. I can't think
of a good biological example where using the parametric variance would be appropriate.
The parametric variance is given by the spreadsheet function VARP(Ys).

Sample variance: You almost always have a sample of observations that you are using
to estimate a population parameter. To get an unbiased estimate of the population variance,

Statistics of dispersion

95

http://udel.edu/~mcdonald/statvartypes.html#measurement
http://udel.edu/~mcdonald/statcentral.html


divide the sum of squares by n−1, not by n. This sample variance, which is the one you will
almost always use, is given by the spreadsheet function VAR(Ys). From here on, when you
see "variance," it means the sample variance.

You might think that if you set up an experiment where you gave 10 guinea pigs little argyle
sweaters, and you measured the body temperature of all 10 of them, that you should use the
parametric variance and not the sample variance. You would, after all, have the body temperature
of the entire population of guinea pigs wearing argyle sweaters in the world. However, for
statistical purposes you should consider your sweater-wearing guinea pigs to be a sample of all the
guinea pigs in the world who could have worn an argyle sweater, so it would be best to use the
sample variance. Even if you go to Española Island and measure the length of every single tortoise
(Geochelone nigra hoodensis) in the population of tortoises living there, it would be best to
consider them a sample of all the tortoises that could have been living there.

Standard deviation: Variance, while it has useful statistical properties that make it the
basis of many statistical tests, is in squared units. A set of lengths measured in centimeters
would have a variance expressed in square centimeters, which is just weird. Taking the
square root of the variance gives a measure of dispersion that is in the original units. The
square root of the parametric variance is the parametric standard deviation, which you will
almost never use; is given by the spreadsheet function STDEVP(Ys). The sample standard
deviation requires a rather complicated correction factor and is given by the spreadsheet
function STDEV(Ys). You will almost always use the sample standard deviation; from here
on, when you see "standard deviation," it means the sample standard deviation.

In addition to being more understandable than the variance as a measure of the amount
of variation in the data, the standard deviation summarizes how close observations are to
the mean in a very nice way. Many variables in biology fit the normal probability
distribution fairly well. If a variable fits the normal distribution, 68.3 percent (or roughly
two-thirds) of the values are within one standard deviation of the mean, 95.4 percent are
within two standard deviations of the mean, and 99.7 (or almost all) are within 3 standard
deviations of the mean. Here's a histogram that illustrates this:
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Left: The theoretical normal distribution. Right: Frequencies of 5,000 numbers
randomly generated to fit the normal distribution. The proportions of this data

within 1, 2, or 3 standard deviations of the mean fit quite nicely to that expected
from the theoretical normal distribution.

The proportions of the data that are within 1, 2, or 3 standard deviations of the mean are
different if the data do not fit the normal distribution, as shown for these two very non-
normal data sets:

Left: Frequencies of 5,000 numbers randomly generated to fit a distribution skewed to the
right. Right: Frequencies of 5,000 numbers randomly generated to fit a bimodal distribution.
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Coefficient of variation. Coefficient of variation is the standard deviation divided by
the mean; it summarizes the amount of variation as a percentage or proportion of the total.
It is useful when comparing the amount of variation among groups with different means.
For example, let's say you wanted to know which had more variation, pinkie finger length
or little toe length; you want to know whether stabilizing selection is stronger on fingers
than toes, since we use our fingers for more precise activities than our toes. Pinkie fingers
would almost certainly have a higher standard deviation than little toes, because fingers are
several times longer than toes. However, the coefficient of variation might show that the
standard deviation, as a percentage of the mean, was greater for toes.

Example
Here are the statistics of dispersion for the blacknose dace data from the central

tendency web page. In reality, you would rarely have any reason to report all of these:

Range                      90
Variance                 1029.5
Standard deviation         32.09
Coefficient of variation   45.8%

How to calculate the statistics
Spreadsheet

I have made a spreadsheet (http://udel.edu/~mcdonald/statdescriptive.xls) that
calculates the range, sample variance, sample standard deviation, and coefficient of
variation, for up to 1000 observations.

Web pages
This web page (http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/

Descriptive.htm) calculates range, variance, standard deviation, and coefficient of variation
for up to 80 observations.

This web page (http://www.ruf.rice.edu/~lane/stat_analysis/descriptive.html) calculates
range, variance, and standard deviation.

SAS
PROC UNIVARIATE will calculate the range, variance, standard deviation, and

coefficient of variation. It calculates the sample variance and sample standard deviation.
For examples, see the central tendency web page.

Further reading
Sokal and Rohlf, pp. 48-53, 57-59, 98-105.

Zar, pp. 32-40.
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Standard error of the mean

When you take a sample of observations from a population, the mean of the sample is
an estimate of the parametric mean, or mean of all of the observations in the population. If
your sample size is small, your estimate of the mean won't be as good as an estimate based
on a larger sample size. Here are 10 random samples from a simulated data set with a true
(parametric) mean of 5. The X's represent the individual observations, the red circles are
the sample means, and the blue line is the parametric mean.

Individual observations (X's) and means (circles) for random samples from a population with
a parametric mean of 5 (horizontal line).

As you can see, with a sample size of only 3, some of the sample means aren't very
close to the parametric mean. The first sample happened to be three observations that were
all greater than 5, so the sample mean is too high. The second sample has three
observations that were less than 5, so the sample mean is too low. With 20 observations per
sample, the sample means are generally closer to the parametric mean.

You'd often like to give some indication of how close your sample mean is likely to be
to the parametric mean. One way to do this is with the standard error of the mean. If you
take many random samples from a population, the standard error of the mean is the
standard deviation of the different sample means. About two-thirds (68.3%) of the sample
means would be within one standard error of the parametric mean, 95.4% would be within
two standard errors, and almost all (99.7%) would be within three standard errors.
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Means of 100 random samples (N=3) from a population with a parametric mean of 5
(horizontal line).

Here's a figure illustrating this. I took 100 samples of 3 from a population with a
parametric mean of 5 (shown by the blue line). The standard deviation of the 100 means
was 0.63. Of the 100 sample means, 70 are between 4.37 and 5.63 (the parametric mean
±one standard error).

Usually you won't have multiple samples to use in making multiple estimates of the
mean. Fortunately, it is possible to estimate the standard error of the mean using the sample
size and standard deviation of a single sample of observations. The standard error of the
mean is estimated by the standard deviation of the observations divided by the square root
of the sample size. For some reason, there's no spreadsheet function for standard error, so
you can use STDEV(Ys)/SQRT(COUNT(Ys)), where Ys is the range of cells containing
your data.

This figure is the same as the one above, only this time I've added error bars indicating
+/- 1 standard error. Because the estimate of the standard error is based on only three
observations, it varies a lot from sample to sample.
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Means ±1 standard error of 100 random samples (n=3) from a population with a parametric
mean of 5 (horizontal line).

With a sample size of 20, each estimate of the standard error is more accurate. Of these
100 samples, 68 include the parametric mean within ±1 standard error of the sample mean.

Means ±1 standard error of 100 random samples (N=20) from a population with a
parametric mean of 5 (horizontal line).

As you increase your sample size, sample standard deviation will fluctuate, but it will
not consistently increase or decrease. It will become a more accurate estimate of the
parametric standard deviation of the population. In contrast, the standard error of the means
will become smaller as the sample size increases. With bigger sample sizes, the sample
mean becomes a more accurate estimate of the parametric mean, so the standard error of
the mean becomes smaller.
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"Standard error of the mean" and "standard deviation of the mean" are equivalent terms.
"Standard error of the mean" is generally used to avoid confusion with the standard
deviation of observations. Sometimes "standard error" is used by itself; this almost
certainly indicates the standard error of the mean, but because there are also statistics for
standard error of the variance, standard error of the median, etc., you should specify
standard error of the mean.

Similar statistics
Confidence limits and standard error of the mean serve the same purpose, to express the

reliability of an estimate of the mean. In some publications, vertical error bars on data
points represent the standard error of the mean, while in other publications they represent
95% confidence intervals. I prefer 95% confidence intervals. When I see a graph with a
bunch of points and vertical bars representing means and confidence intervals, I know that
most (95%) of the vertical bars include the parametric means. When the vertical bars are
standard errors of the mean, only about two-thirds of the bars are expected to include the
parametric means; I have to mentally double the bars to get the approximate size of the
95% confidence interval. In addition, for very small sample sizes, the 95% confidence
interval is larger than twice the standard error, and the correction factor is even more
difficult to do in your head. Whichever statistic you decide to use, be sure to make it clear
what the error bars on your graphs represent. I have seen lots of graphs in scientific
journals that gave no clue about what the error bars represent, which makes them pretty
useless.

Standard deviation and coefficient of variation are used to show how much variation
there is among individual observations, while standard error or confidence intervals are
used to show how good your estimate of the mean is. The only time you would report
standard deviation or coefficient of variation would be if you're actually interested in the
amount of variation. For example, if you grew a bunch of soybean plants with two different
kinds of fertilizer, your main interest would probably be whether the yield of soybeans was
different, so you'd report the mean yield ± either standard error or confidence intervals. If
you were going to do artificial selection on the soybeans to breed for better yield, you
might be interested in which treatment had the greatest variation (making it easier to pick
the fastest-growing soybeans), so then you'd report the standard deviation or coefficient of
variation.

There's no point in reporting both standard error of the mean and standard deviation. As
long as you report one of them, plus the sample size (N), anyone who needs to can
calculate the other one.

Example
The standard error of the mean for the blacknose dace data from the central tendency

web page is 10.70.
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How to calculate the standard error
Spreadsheet

The descriptive statistics spreadsheet (http://udel.edu/~mcdonald/descriptive.xls)
calculates the standard error of the mean for up to 1000 observations, using the function
=STDEV(Ys)/SQRT(COUNT(Ys)).

Web pages
Web pages that will calculate standard error of the mean are here

(http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/Descriptive.htm) , here
(http://graphpad.com/quickcalcs/CImean1.cfm) , and here (http://www.ruf.rice.edu/~lane/
stat_analysis/descriptive.html) .

SAS
PROC UNIVARIATE will calculate the standard error of the mean. For examples, see

the central tendency web page.

Further reading
Sokal and Rohlf, pp. 127-136.

Zar, pp. 76-79.
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Confidence limits

After you've calculated the mean of a set of observations, you'd often like to give some
indication of how close your estimate is likely to be to the parametric mean. One way to do
this is with confidence limits, numbers at the upper and lower end of a confidence interval.
Usually, 95% confidence limits are used, although you could use other values. Setting 95%
confidence limits means that if you took repeated random samples from a population and
calculated the mean and confidence limits for each sample, the confidence interval for 95%
of your samples would include the parametric mean.

To illustrate this, here are the means and confidence intervals for 100 samples of 3
observations from a population with a parametric mean of 5. Of the 100 samples, 94
(shown with X for the mean and a thin line for the confidence interval) have the parametric
mean within their 95% confidence interval, and 6 (shown with circles and thick lines) have
the parametric mean outside the confidence interval.

With larger sample sizes, the 95% confidence intervals get smaller:
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When you calculate the confidence limits for a single sample, it is tempting to say that
"there is a 95% probability that the confidence interval includes the parametric mean." This
is technically incorrect, because it implies that if you collected samples with the same
confidence interval, sometimes they would include the parametric mean and sometimes
they wouldn't. For example, the first sample in the figure above has confidence limits of
4.59 and 5.51. It would be incorrect to say that 95% of the time, the parametric mean for
this population would lie between 4.59 and 5.51. If you took repeated samples from this
same population and repeatedly got confidence limits of 4.59 and 5.51, the parametric
mean (which is 5, remember) would be in this interval 100% of the time. Some statisticians
don't care about the details of the definition, but others are very picky about this, so it's
good to know.

Confidence limits for measurement variables
To calculate the confidence limits for a measurement variable, multiply the standard

error of the mean times the appropriate t-value. The t-value is determined by the probability
(0.05 for a 95% confidence interval) and the degrees of freedom (n−1). In a spreadsheet,
you could use =(STDEV(Ys)/SQRT(COUNT(Ys))*TINV(0.05, COUNT(Ys)-1), where Ys
is the range of cells containing your data. This value is added to and subtracted from the
mean to get the confidence limits. Thus if the mean is 87 and the t-value times the standard
error is 10.3, the confidence limits would be 75.7 to 97.3. You could also report this as "87
±10.3 (95% confidence limits)." Both confidence limits and standard errors are reported as
the "mean ± something," so always be sure to specify which you're talking about.

All of the above applies only to normally distributed measurement variables. For measurement
data from a highly non-normal distribution, bootstrap techniques, which I won't talk about here,
might yield better estimates of the confidence limits.

Confidence limits

105

http://udel.edu/~mcdonald/statvartypes.html#measurement
http://udel.edu/~mcdonald/stderr.html
http://udel.edu/~mcdonald/stderr.html


Confidence limits for nominal variables
There is a different, more complicated formula, based on the binomial distribution, for

calculating confidence limits of proportions (nominal data). Importantly, it yields
confidence limits that are not symmetrical around the proportion, especially for proportions
near zero or one. John Pezzullo has an easy-to-use web page for confidence intervals of a
proportion. To see how it works, let's say that you've taken a sample of 20 men and found 2
colorblind and 18 non-colorblind. Go to the web page and enter 2 in the "Numerator" box
and 20 in the "Denominator" box," then hit "Compute." The results for this example would
be a lower confidence limit of 0.0124 and an upper confidence limit of 0.3170. You can't
report the proportion of colorblind men as "0.10 ± something," instead you'd have to say
"0.10, 95% confidence limits of 0.0124, 0.3170," or maybe "0.10 +0.2170/-0.0876 (95%
confidence limits)."

An alternative technique for estimating the confidence limits of a proportion assumes
that the sample proportions are normally distributed. This approximate technique yields
symmetrical confidence limits, which for proportions near zero or one are obviously
incorrect. For example, the confidence limits on 0.10 with a sample size of 20 are -0.03 to
0.23, which is ridiculous (you couldn't have less than zero percent of men being color-
blind). It would also be incorrect to say that the confidence limits were 0 and 0.23, because
you know the proportion of colorblind men in your population is greater than 0 (your
sample had two colorblind men, so you know the population has at least two colorblind
men). I consider confidence limits for proportions that are based on the normal
approximation to be obsolete for most purposes; you should use the confidence interval
based on the binomial distribution, unless the sample size is so large that it is
computationally impractical. Unfortunately, you will see the confidence limits based on the
normal approximation used more often than the correct, binomial confidence limits.

The formula for the 95% confidence interval using the normal approximation is
p ±1.96√[p(1-p)/n], where p is the proportion and n is the sample size. Thus, for p=0.20 and n=100,
the confidence interval would be ±1.96√[0.20(1-0.20)/100], or 0.20±0.078. A common rule of
thumb says that it is okay to use this approximation as long as npq is greater than 5; my rule of
thumb is to only use the normal approximation when the sample size is so large that calculating the
exact binomial confidence interval makes smoke come out of your computer.

Similar statistics
Confidence limits and standard error of the mean serve the same purpose, to express the

reliability of an estimate of the mean. In some publications, vertical error bars on data
points represent the standard error of the mean, while in other publications they represent
95% confidence intervals. I prefer 95% confidence intervals. When I see a graph with a
bunch of points and vertical bars representing means and confidence intervals, I know that
most (95%) of the vertical bars include the parametric means. When the vertical bars are
standard errors of the mean, only about two-thirds of the bars are expected to include the
parametric means; I have to mentally double the bars to get the approximate size of the
95% confidence interval (because t(0.05) is approximately 2 for all but very small values of

Handbook of Biological Statistics

106

http://udel.edu/~mcdonald/statvartypes.html#nominal
http://statpages.org/confint.html
http://statpages.org/confint.html
http://udel.edu/~mcdonald/statstderr.html


n). Whichever statistic you decide to use, be sure to make it clear what the error bars on
your graphs represent.

Examples
Measurement data: The blacknose dace data from the central tendency web page has

an arithmetic mean of 70.0, with a 95% confidence interval of 24.7. The lower confidence
limit is 70.0−24.7=45.3, and the upper confidence limit is 70+24.7=94.7.

Nominal data: If you work with a lot of proportions, it's good to have a rough idea of
confidence limits for different sample sizes, so you have an idea of how much data you'll
need for a particular comparison. For proportions near 50%, the confidence intervals are
roughly ±30%, 10%, 3%, and 1% for n=10, 100, 1000, and 10,000, respectively. Of course,
this rough idea is no substitute for an actual power analysis.

n proportion=0.10 proportion=0.50
10 0.0025, 0.4450 0.1871, 0.8129
100 0.0490, 0.1762 0.3983, 0.6017
1000 0.0821, 0.1203 0.4685, 0.5315
10,000 0.0942, 0.1060 0.4902, 0.5098

How to calculate confidence limits
Spreadsheets

The descriptive statistics spreadsheet (http://udel.edu/~mcdonald/descriptive.xls)
calculates 95% confidence limits of the mean for up to 1000 measurements. The
confidence intervals for a binomial proportion spreadsheet calculates 95% confidence
limits for nominal variables, using both the exact binomial and the normal approximation.
(A corrected version of this spreadsheet was posted on Dec. 20, 2007; if you have the older
version, discard it.)

Web pages
This web page (http://graphpad.com/quickcalcs/CImean1.cfm) calculates confidence

intervals of the mean for up to 10,000 measurement observations. The web page for
confidence intervals of a proportion (http://statpages.org/confint.html) handles nominal
variables.

SAS
To get confidence limits for a measurement variable, add CIBASIC to the PROC

UNIVARIATE statement, like this:

data fish;
input location $ dacenumber;
cards;
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Mill_Creek_1               76
Mill_Creek_2              102
North_Branch_Rock_Creek_1  12
North_Branch_Rock_Creek_2  39
Rock_Creek_1               55
Rock_Creek_2               93
Rock_Creek_3               98
Rock_Creek_4               53
Turkey_Branch             102
;
proc univariate data=fish cibasic;
run;

The output will include the 95% confidence limits for the mean (and for the standard
deviation and variance, which you would hardly ever need):

Basic Confidence Limits Assuming Normality

Parameter          Estimate     95% Confidence Limits

Mean               70.00000      45.33665    94.66335
Std Deviation      32.08582      21.67259    61.46908
Variance               1030     469.70135        3778

This shows that the blacknose dace data have a mean of 70, with confidence limits of 45.3
to 94.7.

You can get the confidence limits for a binomial proportion using PROC FREQ. Here's
the sample program from the exact binomial page:

data gus;
input paw $;
cards;

right
left
right
right
right
right
left
right
right
right
;
proc freq data=gus;

tables paw / binomial(p=0.5);
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exact binomial;
run;

And here is part of the output:

Binomial Proportion
for paw = left

--------------------------------
Proportion                0.2000
ASE                       0.1265
95% Lower Conf Limit      0.0000
95% Upper Conf Limit      0.4479

Exact Conf Limits
95% Lower Conf Limit      0.0252
95% Upper Conf Limit      0.5561

The first pair of confidence limits shown is based on the normal approximation; the second
pair is the better one, based on the exact binomial calculation. Note that if you have more
than two values of the nominal variable, the confidence limits will only be calculated for
the value whose name is first alphabetically. For example, if the Gus data set included
"left," "right," and "both" as values, SAS would only calculate the confidence limits on the
proportion of "both." One way to solve this would be to run the program three times,
changing the name of "left" to "aleft," then changing the name of "right" to "aright," to
make each one first in one run.

Further reading
Sokal and Rohlf, pp. 139-151 (means).

Zar, pp. 98-100 (means), 527-530 (proportions).
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Student's t-test

Any statistical test that uses the t-distribution can be called a t-test. One of the most
common is Student's t-test, named after "Student," the pseudonym that William Gosset
used to hide his employment by the Guinness brewery in the early 1900s(they didn't want
their competitors to know that they were making better beer with statistics). Student's t-test
is used to compare the means of two samples. Other t-tests include tests to compare a single
observation to a sample, or to compare a sample mean to a theoretical mean (I won't cover
either of these, as they are not used very often in biology), and the paired t-test.

When to use it
Use Student's t-test when you have one nominal variable and one measurement

variable, and you want to compare the mean values of the measurement variable. The
nominal variable must have only two values, such as "male" and "female" or "treated" and
"untreated."

Null hypothesis
The statistical null hypothesis is that the means of the measurement variable are equal

for the two categories.

How the test works
The test statistic, ts, is calculated using a formula that has the difference between the

means in the numerator; this makes ts get larger as the means get further apart. The
denominator is the standard error of the difference in the means, which gets smaller as the
sample variances decrease or the sample sizes increase. Thus ts gets larger as the means get
farther apart, the variances get smaller, or the sample sizes increase.

The probability of getting the observed ts value under the null hypothesis is calculated
using the t-distribution. The shape of the t-distribution, and thus the probability of getting a
particular ts value, depends on the number of degrees of freedom. The degrees of freedom
for a t-test is the number of observations in each group minus 2, or n1+n2-2.

Assumptions
The t-test assumes that the observations within each group are normally distributed and

the variances are equal in the two groups. It is not particularly sensitive to deviations from

Handbook of Biological Statistics

110

http://udel.edu/~mcdonald/statpaired.html
http://udel.edu/~mcdonald/statvartypes.html#nominal
http://udel.edu/~mcdonald/statvartypes.html#measurement
http://udel.edu/~mcdonald/statvartypes.html#measurement
http://udel.edu/~mcdonald/stathyptesting.html#null
http://udel.edu/~mcdonald/statnormal.html
http://udel.edu/~mcdonald/stathomog.html


these assumptions, but if the data are very non-normal, the Mann-Whitney U-test should be
used. Welch's t-test can be used if the variances are unequal.

Similar tests
Student's t-test is mathematically identical to a one-way anova done on data with two

categories. The t-test is easier to do and is familiar to more people, but it is limited to just
two categories of data. The anova can be done on two or more categories. I recommend
that if your research always involves comparing just two means, you should use the t-test,
because it is more familiar to more people. If you write a paper that includes some
comparisons of two means and some comparisons of more than two means, you may want
to call all the tests one-way anovas, rather than switching back and forth between two
different names (t-test and one-way anova) for what is essentially the same thing.

If the data are not normally distributed, and they can't be made normal using data
transformations, it may be better to compare the ranks using a Mann-Whitney U-test.
Student's t-test is not very sensitive to deviations from the normal distribution, so unless the
non-normality is really dramatically obvious, you can use the t-test.

If the variances are far from equal, you can use Welch's t-test for unequal variances;
you can do it in a spreadsheet using "=TTEST(array1, array2, tails, type)" by entering "3"
for "type" instead of "2". You can also do Welch's t-test using this web page. This is a
rarely used test.

The paired t-test is used when the measurement observations come in pairs, such as
comparing the strengths of the right arm with the strength of the left arm on a set of people.

Example
In fall 2004, students in the 2 p.m. section of my Biological Data Analysis class had an

average height of 66.6 inches, while the average height in the 5 p.m. section was 64.6
inches. Are the average heights of the two sections significantly different? Here are the
data:

2 p.m. 5 p.m.
69     68
70     62
66     67
63     68
68     69
70     67
69     61
67     59
62     62
63     61
76     69
59     66
62     62
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62     62
75     61
62     70
72
63

There is one measurement variable, height, and one nominal variable, class section. The
null hypothesis is that the mean heights in the two sections are the same. The results of the
t-test (t=1.29, 32 d.f., P=0.21) do not reject the null hypothesis.

Graphing the results
Because it's just comparing two numbers, you'd rarely put the results of a t-test in a

graph for publication. For a presentation, you could draw a bar graph like the one for a one-
way anova.

How to do the test
Spreadsheets

The easiest way to do the test is with the TTEST function. This takes the form
"=TTEST(array1, array2, tails, type)". "Array1" is the set of cells with the measurement
variables from your first class of observations, and "array2" is the set of cells with your
second class of observations. "Tails" is either 1 (for a one-tailed test) or 2 (for a two-tailed
test). You'll almost always want to do a two-tailed test. To do a regular t-test, enter "2" for
the "type." The function returns the P-value of the test.

For the above height data, enter the first column of numbers in cells A2 through A23,
and the second column of numbers in cells B2 through B18. In an empty cell, enter
"=TTEST(A2:A23, B2:B18, 2, 2)". The result is P=0.207, so the difference in means is not
significant.

Web pages
There are web pages to do the t-test here (http://graphpad.com/quickcalcs/ttest1.cfm) ,

here (http://www.physics.csbsju.edu/stats/t-test_NROW_form.html) , here
(http://www.fon.hum.uva.nl/Service/Statistics/2Sample_Student_t_Test.html) , and here
(http://faculty.vassar.edu/lowry/t_ind_stats.html) .

SAS
You can use PROC TTEST for Student's t-test; the CLASS parameter is the nominal

variable, and the VAR parameter is the measurement variable. Here is an example program
for the height data above.
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data sectionheights;
input section $ height;
cards;

2pm 69
====See the web page for the full data set====
5pm 70
proc ttest;
class section;
var height;
run;

The output includes a lot of information; the P-value for the Student's t-test is under "Pr >
|t| on the line labelled "Pooled". For these data, the P-value is 0.2067.

Variable        Method     Variances     DF    t Value    Pr > |t|

height          Pooled         Equal     32       1.29      0.2067
height   Satterthwaite       Unequal   31.2       1.31      0.1995

Power analysis
To estimate the sample sizes needed to detect a significant difference between two

means, you need four numbers: the effect size, or the difference in means you hope to
detect; the standard deviation; alpha, or the significance level (usually 0.05), and beta, the
probability of accepting the null hypothesis when it is false. Since you do the power
analysis before conducting the experiment, your estimate of the standard deviation will
have to come from a previous experiment.

To use this power analysis page, enter the average values for the two samples (only the
difference between them matters) and the standard deviation (enter the same number for
both samples). The web page seems to be doing a one-tailed power analysis, so enter 2.5%
for the alpha level. For beta, I recommend 10%. The answer will say "Sample size=n for
both samples!"; it means that is the sample size needed for each sample, not for both added
together.

As an example, let's say you're planning a clinical trial of Niaspan in people with low
levels of HDL (the "good cholesterol"). The average HDL level before the trial is 32 mg/dl,
and you decide you want to detect a difference of 10 percent (3.2 mg/dl), at the P<0.05
level, with a probability of not detecting a difference this large, if it exists, of 10 percent
(beta=0.10). Based on prior research, you estimate the standard deviation as 4.3 mg/dl.

On the power analysis web page, enter 32 for the "Average value for sample 1", 35.2
for "Average value for sample 1", 4.3 for both of the "Standard deviation" values, 2.5% for
the alpha level, and 10 percent for the beta level. The result is 38, so you'll need a
minimum of 38 people in your placebo group and 38 in the Niaspan group.
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Further reading
Sokal and Rohlf, pp. 223-227.

Zar, pp. 122-129.
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One-way anova: Introduction

When to use it
Analysis of variance (anova) is the most commonly used technique for comparing the

means of groups of measurement data. There are lots of different experimental designs that
can be analyzed with different kinds of anova; in this handbook, I describe only one-way
anova, nested anova and two-way anova.

In a one-way anova (also known as a single-classification anova), there is one
measurement variable and one nominal variable. Multiple observations of the measurement
variable are made for each value of the nominal variable. For example, you could measure
the amount of transcript of a particular gene for multiple samples taken from arm muscle,
heart muscle, brain, liver, and lung. The transcript amount would be the measurement
variable, and the tissue type (arm muscle, brain, etc.) would be the nominal variable.

Null hypothesis
The statistical null hypothesis is that the means of the measurement variable are the

same for the different categories of data; the alternative hypothesis is that they are not all
the same.

How the test works
The basic idea is to calculate the mean of the observations within each group, then

compare the variance among these means to the average variance within each group. Under
the null hypothesis that the observations in the different groups all have the same mean, the
weighted among-group variance will be the same as the within-group variance. As the
means get further apart, the variance among the means increases. The test statistic is thus
the ratio of the variance among means divided by the average variance within groups, or Fs.
This statistic has a known distribution under the null hypothesis, so the probability of
obtaining the observed Fs under the null hypothesis can be calculated.

The shape of the F-distribution depends on two degrees of freedom, the degrees of
freedom of the numerator (among-group variance) and degrees of freedom of the
denominator (within-group variance). The among-group degrees of freedom is the number
of groups minus one. The within-groups degrees of freedom is the total number of
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observations, minus the number of groups. Thus if there are n observations in a groups,
numerator degrees of freedom is a-1 and denominator degrees of freedom is n-a.

Steps in performing a one-way anova
1. Decide whether you are going to do a Model I or Model II anova.
2. If you are going to do a Model I anova, decide whether you will do planned

comparisons of means or unplanned comparisons of means. A planned comparison
is where you compare the means of certain subsets of the groups that you have
chosen in advance. In the arm muscle, heart muscle, brain, liver, lung example, an
obvious planned comparison might be muscle (arm and heart) vs. non-muscle
(brain, liver, lung) tissue. An unplanned comparison is done when you look at the
data and then notice that something looks interesting and compare it. If you looked
at the data and then noticed that the lung had the highest expression and the brain
had the lowest expression, and you then compared just lung vs. brain, that would
be an unplanned comparison. The important point is that planned comparisons
must be planned before analyzing the data (or even collecting them, to be strict
about it).

3. If you are going to do planned comparsions, decide which comparisons you will
do. If you are going to do unplanned comparisons, decide which technique you will
use.

4. Collect your data.
5. Make sure the data do not violate the assumptions of the anova (normality and

homoscedasticity) too severely. If the data do not fit the assumptions, try to find a
data transformation that makes them fit. If this doesn't work, do a Kruskal–Wallis
test instead of a one-way anova.

6. If the data do fit the assumptions of an anova, test the heterogeneity of the means.
7. If you are doing a Model I anova, do your planned or unplanned comparisons

among means.
8. If the means are significantly heterogeneous, and you are doing a Model II anova,

estimate the variance components (the proportion of variation that is among groups
and the proportion that is within groups).

Similar tests
If you have only two groups, you can do a Student's t-test. This is mathematically

equivalent to an anova, so if all you'll ever do is comparisons of two groups, you might as
well use t-tests. If you're going to do some comparisons of two groups, and some with more
than two groups, it will probably be less confusing if you call all of your tests one-way
anovas.
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If there are two or more nominal variables, you should use a two-way anova, a nested
anova, or something more complicated that I won't cover here. If you're tempted to do a
very complicated anova, you may want to break your experiment down into a set of simpler
experiments for the sake of comprehensibility.

If the data severely violate the assumptions of the anova, you should use the Kruskal-
Wallace test, a non-parametric test, instead.

Power analysis
Doing a power analysis for a one-way anova is kind of tricky. Not only do you need an

estimate of the standard deviation within groups, you also need to decide what kind of
significant result you're looking for.

If you're mainly interested in the overall significance test, the sample size needed is a
function of the standard deviation of the group means. For example, if you're studying
transcript amount of some gene in arm muscle, heart muscle, brain, liver, and lung, you
might decide that you'd like it to be significant if the means were 10 units in arm muscle,
10 units in heart muscle, 15 units in brain, 15 units in liver, and 15 units in lung. Those five
numbers have a standard deviation of 2.74. Your estimate of the standard deviation of
means that you're looking for may be based on a pilot experiment or published literature on
similar experiments.

If you're mainly interested in the planned or unplanned comparisions of means, you
need to decide ahead of time what method you're going to use. The web page described
below works for the Dunnett, Tukey/HSD, Bonferroni, and Scheffe methods.

Here is a web page for determining the sample size needed for a one-way anova
(http://www.stat.uiowa.edu/~rlenth/Power/index.html) . In the box on the left of that page,
choose "Balanced ANOVA--Any Model" and click on the "Run Selection" button. You'll
get a popup window titled "Select an ANOVA model"; leave everything with the defaults.
If you're mainly interested in comparisons of means, click on the "Differences/Contrasts"
button and see if you can figure it out; I couldn't.

To do a power analysis for the overall significance test, click on the F-tests button.
Each variable has a slider bar and an obscure little square that you can click on to type in
the number. For "levels[treatment]", enter the number of groups. Enter your estimate of the
standard deviation among groups that you'd like to detect under "SD[treatment]", and enter
your estimate of the standard deviation within groups under "SD[within]". For "n[Within]",
enter a guess of the sample size (it must be the same in each group). Increase or decrease
"n[Within]" until the "Power[treatment]" is your desired power (1-beta). For example, if
you want to detect a significant (P<0.05) difference among 5 means with a standard
deviation among means of 2.74, a standard deviation within groups of 5, and a beta
(probability of a false negative) of 0.10, enter the appropriate numbers and then try
different sample sizes until you hit "n[Within]" of 14, which gives you a
"Power[treatment]" of 0.90.
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Further reading
Sokal and Rohlf, pp. 206-217.

Zar, pp. 177-195.
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Model I vs. Model II anova

One of the first steps in performing a one-way anova is deciding whether to do a Model
I or Model II anova. The test of homogeneity of means is the same for both models, but the
choice of models determines what you do if the means are significantly heterogeneous.

Model I anova
In a model I anova (also known as a fixed-effects model anova), the groups are

identified by some characteristic that is repeatable and interesting. If there is a difference
among the group means and you repeat the experiment, you would expect to see the same
pattern of differences among the means, because you could classify the observations into
the same groups. The group labels are meaningful (such as "seawater, glucose solution,
mannose solution"). You are interested in the relationship between the way the data are
grouped (the "treatments") and the group means. Examples of data for which a model I
anova would be appropriate are:

• Time of death of amphipod crustaceans being suffocated in plain seawater, a
glucose solution, or a mannose solution. The three different solutions are the
treatments, and the question is whether amphipods die more quickly in one
solution than another. If you find that they die the fastest in the mannose solution,
you would expect them to die the fastest in mannose if you repeated the
experiment.

• Amounts of a particular transcript in tissue samples from arm muscle, heart
muscle, brain, liver and lung, with multiple samples from each tissue. The tissue
type is the treatment, and the question you are interested in is which tissue has the
highest amount of transcript. Note that "treatment" is used in a rather broad sense.
You didn't "treat" a bunch of cells and turn them into brain cells; you just sampled
some brain cells.

• The body length of house sparrows from Texas, Iowa and Saskatchewan, if you are
interested in the question "What area has the biggest house sparrows?" If you find
that Saskatchewan has the biggest house sparrows, you would find that interesting.

If you have significant heterogeneity among the means in a model I anova, the next step
(if there are more than two groups) is usually to try to determine which means are
significantly different from other means. In the amphipod example, if there were significant
heterogeneity in time of death among the treatments, the next question would be "Is that
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because mannose kills amphipods, while glucose has similar effects to plain seawater? Or
does either sugar kill amphipods, compared with plain seawater? Or is it glucose that is
deadly?" To answer questions like these, you will do either planned comparisons of means
(if you decided, before looking at the data, on a limited number of comparisons) or
unplanned comparisons of means (if you just looked at the data and picked out interesting
comparisons to do).

Model II anova
In a model II anova (also known as a random-effects model anova), the groups are

identified by some characteristic that is not interesting; they are just groups chosen from a
larger number of possible groups. If there is heterogeneity among the group means and you
repeat the experiment, you would expect to see heterogeneity again, but you would not
expect to see the same pattern of differences. The group labels are generally arbitrary (such
as "family A, family B, family C"). You are interested in the amount of variation among
the means, compared with the amount of variation within groups. Examples of data for
which a model II anova would be appropriate are:

• Repeated measurements of glycogen levels in each of several pieces of a rat
gastrocnemius muscle. If variance among pieces is a relatively small proportion of
the total variance, it would suggest that a single piece of muscle would give an
adequate measure of glycogen level. If variance among pieces is relatively high, it
would suggest that either the sample preparation method needs to be better
standardized, or there is heterogeneity in glycogen level among different parts of
the muscle.

• Sizes of treehoppers from different sibships, all raised on a single host plant. If the
variance among sibships is high relative to the variance within sibships (some
families have large treehopppers, some families have small treehoppers), it would
indicate that heredity (or maternal effects) play a large role in determining size.

• The body length of house sparrows from Texas, Iowa and Saskatchewan, if you are
interested in the question "How much geographic variation in house sparrow size
has evolved since they were introduced to North America in the 1800s?" Here it
would be the amount of geographic variation that is interesting, not the pattern;
you wouldn't really care where the biggest sparrows were. The locations could just
as easily have been labeled "location 1, location 2, location 3," and if you repeated
the experiment you might collect sparrows from Georgia, Colorado and Delaware.

If you have significant heterogeneity among the means in a model II anova, the next
step is to partition the variance into the proportion due to the treatment effects and the
proportion within treatments.
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Further reading
Sokal and Rohlf, pp. 201-205.

Zar, pp. 184-185.
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One-way anova: Testing the
homogeneity of means

Once you have chosen between a model I and model II anova, the next step is to test the
homogeneity of means. The null hypothesis is that the all the groups have the same mean,
and the alternate hypothesis is that at least one of the means is different from the others.

To test the null hypthesis, the variance of the population is estimated in two different
ways. I'll explain this in a way that is strictly correct only for a "balanced" one-way anova,
one in which the sample size for each group is the same, but the basic concept is the same
for unbalanced anovas.

If the null hypothesis is true, all the groups are samples from populations with the same
mean. One of the assumptions of the anova is that the populations have the same variance,
too. One way to estimate this variance starts by calculating the variance within each
sample—take the difference between each observation and its group's mean, square it, then
sum these squared deviates and divide by the number of observations in the group minus
one. Once you've estimated the variance within each group, you can take the average of
these variances. This is called the "within-group mean square," or MSwithin.

For another way to estimate the variance within groups, remember that if you take
repeated samples of a population, you expect the means you get from the multiple samples
to have a standard deviation that equals the standard deviation within groups divided by the
square root of n; this is the definition of standard error of the mean, or

E(SDmeans)=SDwithin/√n

Remember that the standard deviation is just the square root of the variance, so squaring
both sides of this gives:

E(Varmeans)=Varwithin/n

so the second way of estimating the variance within groups is n×Varmeans, the sample size
within a group times the variance of the group means. This quantity is known as the
among-group mean square, abbreviated MSamong or MSgroup.
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If the null hypothesis is true and the groups are all samples from populations with the
same mean, the two estimates of within-group variance, MSwithin and MSamong, should be
about the same; they're just different ways of estimating the same quantity. Dividing
MSamong by MSwithin should therefore be around 1. This quantity, MSamong/MSwithin, is
known as Fs, and it is the test statistic for the anova.

If the null hypothesis is not true, and the groups are samples of populations with
different means, then MSamong will be bigger than MSwithin, and Fs will be greater than 1.
To illustrate this, here are two sets of five samples (n=20) taken from normally distributed
populations. The first set of five samples are from populations with a mean of 5; the null
hypothesis, that the populations all have the same mean, is true.

Five samples (n=20) from populations with parametric means of 5. Thick
horizontal lines indicate sample means.

The variance among the five group means is quite small; multiplying it by the sample size
(20) yields 0.72, about the same as the average variance within groups (1.08). These are
both about the same as the parametric variance for these populations, which I set to 1.0.
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Four samples (n=20) from populations with parametric means of 5; the last
sample is from a population with a parametric mean of 3.5. Thick

horizontal lines indicate sample means.

The second graph is the same as the first, except that I have subtracted 1.5 from each
value in the last sample. The average variance within groups (MSwithin) is exactly the
same, because each value was reduced by the same amount; the size of the variation among
values within a group doesn't change. The variance among groups does get bigger, because
the mean for the last group is now quite a bit different from the other means. MSamong is
therefore quite a bit bigger than MSwithin, so the ratio of the two (Fs) is much larger than 1.

The theoretical distribution of Fs under the null hypothesis is given by the F-
distribution. It depends on the degrees of freedom for both the numerator (among-groups)
and denominator (within-groups). The probability associated with an F-statistic is given by
the spreadsheet function FDIST(x, df1, df2), where x is the observed value of the F-
statistic, df1 is the degrees of freedom in the numerator (the number of groups minus one,
for a one-way anova) and df2 is the degrees of freedom in the denominator (total n minus
the number of groups, for a one-way anova).

Example
Here are some data on a shell measurement (the length of the anterior adductor muscle

scar, standardized by dividing by length) in the mussel Mytilus trossulus from five
locations: Tillamook, Oregon; Newport, Oregon; Petersburg, Alaska; Magadan, Russia;
and Tvarminne, Finland, taken from a much larger data set used in McDonald et al. (1991).
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Tillamook  Newport  Petersburg  Magadan  Tvarminne
0.0571    0.0873    0.0974     0.1033    0.0703
0.0813    0.0662    0.1352     0.0915    0.1026
0.0831    0.0672    0.0817     0.0781    0.0956
0.0976    0.0819    0.1016     0.0685    0.0973
0.0817    0.0749    0.0968     0.0677    0.1039
0.0859    0.0649    0.1064     0.0697    0.1045
0.0735    0.0835    0.1050     0.0764
0.0659    0.0725               0.0689
0.0923
0.0836

The conventional way of reporting the complete results of an anova is with a table (the
"sum of squares" column is often omitted). Here are the results of a one-way anova on the
mussel data:

sum of squares d.f. mean square Fs P
among groups 0.00452 4 0.001113 7.12 2.8×10-4

within groups 0.00539 34 0.000159
total 0.00991 38

If you're not going to use the mean squares for anything, you could just report this as "The
means were significantly heterogeneous (one-way anova, F4, 34=7.12, P=2.8×10-4)." The
degrees of freedom are given as a subscript to F.

Note that statisticians often call the within-group mean square the "error" mean square.
I think this can be confusing to non-statisticians, as it implies that the variation is due to
experimental error or measurement error. In biology, the within-group variation is often
largely the result of real, biological variation among individuals, not the kind of mistakes
implied by the word "error."
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Length of the anterior adductor muscle scar
divided by total length in Mytilus trossulus.

Means ±one standard error are shown for five
locations.

Graphing the results
The usual way to graph the results of a

one-way anova is with a bar graph. The
heights of the bars indicate the means, and
there's usually some kind of error bar: 95%
confidence intervals, standard errors, or
comparison intervals. Be sure to say in the
figure caption what the error bars represent.

How to do the test
Spreadsheet

I have put together a spreadsheet to do one-way anova (http://udel.edu/~mcdonald/
anova.xls) on up to 50 groups and 1000 observations per group. It calculates the P-value,
does unplanned comparisons of means using Gabriel comparison intervals and the
Tukey–Kramer test, and partitions the variance into among- and within-groups
components.

Some versions of Excel include an "Analysis Toolpak," which includes an "Anova:
Single Factor" function that will do a one-way anova. You can use it if you want, but I can't
help you with it. It does not include any techniques for unplanned comparisons of means,
and it does not partition the variance.

Web pages
Several people have put together web pages that will perform a one-way anova; one

good one is here. (http://www.physics.csbsju.edu/stats/anova.html) It is easy to use, and
will handle three to 26 groups and 3 to 1024 observations per group. It does not calculate
Gabriel comparison intervals or other statistics used for unplanned comparisons, and it does
not partition the variance. Another good web page for anova is Rweb
(http://rweb.stat.umn.edu/cgi-bin/Rweb/buildModules.cgi) .

SAS
There are several SAS procedures that will perform a one-way anova. The two most

commonly used are PROC ANOVA and PROC GLM. Either would be fine for a one-way
anova, but PROC GLM (which stands for "General Linear Models") can be used for a
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much greater variety of more complicated analyses, so you might as well use it for
everything.

Here is a SAS program to do a one-way anova on the mussel data from above.

data musselshells;
input location $ aam;
cards;

Tillamook 0.0571
====See the web page for the full data set====
Tvarminne 0.1045
proc glm data=musselshells;

class location;
model aam = location;

run;

The output includes the traditional anova table; the P-value is given under "Pr > F".

Sum of
Source            DF       Squares    Mean Square   F Value   Pr > F

Model              4    0.00451967     0.00112992     7.12    0.0003
Error             34    0.00539491     0.00015867
Corrected Total   38    0.00991458

Further reading
Sokal and Rohlf, pp. 207-217.

Zar, pp. 183.

Reference
McDonald, J.H., R. Seed and R.K. Koehn. 1991. Allozymes and morphometric characters

of three species of Mytilus in the Northern and Southern Hemispheres. Mar. Biol.
111:323-333.
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One-way anova: Planned
comparisons of means

With a Model I anova, in addition to testing the overall heterogeneity among the means
of more than two groups, it is often desirable to perform additional comparisons of subsets
of the means. For example, let's say you have measured the height of the arch of the foot in
athletes from nine women's teams: soccer, basketball, rugby, swimming, softball,
volleyball, lacrosse, crew and cross-country. You might want to compare the mean of
sports that involve a lot of jumping (basketball and volleyball) vs. all other sports. Or you
might want to compare swimming vs. all other sports. Or you might want to compare
soccer vs. basketball, since they involve similar amounts of running but different amounts
of kicking. There are thousands of ways of dividing up nine groups into subsets, and if you
do unplanned comparisons, you have to adjust your P-value to a much smaller number to
take all the possible tests into account. It is better to plan a small number of interesting
comparisons before you collect the data, because then it is not necessary to adjust the P-
value for all the tests you didn't plan to do.

Orthogonal comparisons
It is best if your planned comparisons are orthogonal, because then you do not need to

adjust the P-value at all. Orthogonal comparisons are those in which all of the comparisons
are independent; you do not compare the same means twice. Doing one comparison of
soccer vs. basketball and one of swimming vs. cross-country would be orthogonal, as
would soccer vs. basketball and soccer vs. swimming. Jumping sports (basketball and
volleyball) vs. non-jumping sports (all others) and rugby vs. lacrosse and softball vs. crew
would be three orthogonal comparisons. Jumping sports vs. non-jumping sports and
volleyball vs. swimming would not be orthogonal, because the volleyball vs. swimming
comparison is included in the jumping vs. non-jumping comparison. Non-ball sports
(swimming, crew, cross-country) vs. ball sports and jumping vs. non-jumping would not be
orthogonal, because swimming vs. volleyball, among several other pairs, would be
included in both comparisons.

The degrees of freedom for each planned comparison is equal to the number of groups,
after pooling, minus one. Thus the jumping vs. non-jumping comparison would have one
degree of freedom, and non-jumping vs. basketball vs. volleyball would have two degrees
of freedom. The maximum total number of degrees of freedom for a set of orthogonal
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comparisons is the numerator degrees of freedom for the original anova (the original
number of groups minus one). You do not need to do a full set of orthogonal comparisons;
in this example, you might want to do jumping vs. non-jumping, then stop. Here is an
example of a full set of orthogonal comparisons for the sport example; note that the degrees
of freedom add up to eight, the number of original groups minus one.

• Jumping (basketball and volleyball) vs. non-jumping sports; 1 d.f.
• Basketball vs. volleyball; 1 d.f.
• Soccer+rugby+lacrosse+softball (ball sports) vs. swimming vs. crew vs. cross-

country; 3 d.f.
• Rugby+lacrosse+softball (non-kicking sports) vs. soccer; 1 d.f.
• Rugby vs. lacrosse vs. softball; 2 d.f.

To perform a planned comparison, you simply perform an anova on the pooled data. If
you have a spreadsheet with the foot arch data from nine sports teams in nine columns, and
you want to do jumping sports vs. non-jumping sports as a planned comparsion, simply
copy the volleyball data from one column and paste it at the bottom of the basketball
column. Then combine all of the data from the other sports into a single column. The
resulting P-value is the correct value to use for the planned comparison.

Non-orthogonal comparisons
Sometimes the hypotheses you are interested in make it necessary to do non-orthogonal

planned comparisons. For example, you might want to do jumping vs. non-jumping sports,
ball sports vs. non-ball sports, swimming vs. crew, and soccer vs. all other sports. In this
case, it is necessary to adjust the P-values downward to account for the multiple tests you
are doing.

To understand why this is necessary, imagine that you did 100 planned comparisons on
the sports data set. Under the null hypothesis that the means were homogeneous, you would
expect about 5 of the comparisons to be "significant" at the p<0.05 level. This is what
p<0.05 means, after all: 5% of the time you get a "significant" result even though the null
hypothesis is true. Clearly it would be a mistake to consider those 5 comparisons that
happen to have P<0.05 to be significant rejections of the particular null hypotheses that
each comparison tests. Instead you want to use a lower alpha, so the overall probability is
less than 0.05 that the set of planned comparisons includes one with a P-value less than the
adjusted alpha.

The sequential Dunn–Sidák method is one good way to adjust alpha levels for planned,
non-orthogonal comparisons. First, the P-values from the different comparisons are put in
order from smallest to largest. If there are k comparisons, the smallest P-value must be less
than 1-(1-alpha)1/k to be significant at the alpha level. Thus if there are four comparisons,
the smallest P-value must be less than 1-(1-0.05)1/4=0.0127 to be significant at the 0.05
level. If it is not significant, the analysis stops. If the smallest P-value is significant, the
next smallest P-value must be less than 1-(1-alpha)1/(k-1), which in this case would be

One-way anova: Planned comparisons of means

129



0.0170. If it is significant, the next P-value must be less than 1-(1-alpha)1/(k-2), and so on
until one of the P-values is not significant.

Other techniques for adjusting the alpha are less powerful than the sequential method,
but you will often see them in the literature and should therefore be aware of them. The
Bonferroni method uses alpha/k as the adjusted alpha level, while the Dunn–Sidák method
uses 1-(1-alpha)1/k. The difference between the Bonferroni and Dunn–Sidák adjusted
alphas is quite small, so it usually wouldn't matter which you used. For example, the
Bonferroni alpha for four comparisons is 0.0125, while the Dunn–Sidák is 0.0127. These
are not sequential methods; the same adjusted alpha is used, no matter how many of the
comparisons are significant.

Really important note about planned comparisons
Planned comparisons must be planned before you look at the data. If you look at some

data, pick out an interesting comparison, then analyze it as if it were a planned comparison,
you will be committing scientific fraud. For example, if you look at the mean arch heights
for the nine sports, see that cross-country has the lowest mean and swimming has the
highest mean, then compare just those two means, your P-value will be much too low. This
is because there are 36 possible pairwise comparisons in a set of 9 means. You expect 5
percent, or 1 out of 20, tests to be "significant" at the P<0.05 level, even if all the data
really fit the null hypothesis, so there's a good chance that the most extreme comparison in
a set of 36 will have a P-value less than 0.05.

It would be acceptable to run a pilot experiment and plan your planned comparisons
based on the results of the pilot experiment. However, if you do this you could not include
the data from the pilot experiment in the analysis; you would have to limit your anova to
the new data.

How to do the tests
Spreadsheet

To do a planned comparison using the one-way anova spreadsheet (http://udel.edu/
~mcdonald/statanovasig.html) , just combine and delete data from the original data set to
make a new data set with the comparison you want, then paste it into the anova
spreadsheet. If you're moving data around within the anova spreadsheet, use the "copy" and
"paste" commands to copy the data to the new destination, followed by "clear" to clear it
from the original location; if you use the "cut" and "paste" commands, it will change the
references in some of the formulas and mess things up. You might be better off doing your
rearranging in a separate spreadsheet, then copying and pasting from there into the anova
spreadsheet.

For example, look at the mussel shell data from the previous page. If one of your
planned contrasts was "Oregon vs. North Pacific", you'd put the data from Newport,
Oregon and Tillamook, Oregon into one column labelled "Oregon," put the data from
Petersburg, Alaska and Magadan, Russia in a second column labelled "North Pacific," and
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delete the Tvarminne data. Putting these two columns of data into the anova spreadsheet
gives F1, 31 = 5.31, P = 0.029, so you would conclude that there was a significant
difference between the Oregon and North Pacific mussels.

To do non-orthogonal planned comparisons with the sequential Dunn–Sidák method,
do each comparison and collect the P-values into a separate spreadsheet. Sort the P-values
from smallest to largest, then see which ones meet the sequential Dunn–Sidák criteria
described above.

Web pages
To do a planned comparison using a web page, just clear the web page (there's usually a

button marked "Clear" or "Reset") and enter the data for whichever comparison you want
to do. You may want to rearrange your data in a spreadsheet, then paste it into the web
page.

SAS
To do planned comparisons in SAS, the simplest way would be to make a new data set

in which you delete the lines you don't want, and give new group names to the lines you
want to group together. For the mussel shell data from the previous page, if one of your
planned contrasts was "Oregon vs. North Pacific", you could change "Newport" and
"Tillamook" to "Oregon," change "Petersburg" and "Magadan" to "North_Pacific," and
delete the Tvarminne data, then run PROC GLM on the modified data set. If you're
experienced with SAS, you can figure out easier ways to do this, but this will work.

Further reading
Sokal and Rohlf, pp. 229-242.
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One-way anova: Unplanned
comparisons of means

In a Model I anova, it is often desirable to perform additional comparisons of subsets of
the means. If you didn't decide on some planned comparisons before doing the anova, you
will be doing unplanned comparisons. Because these are unplanned, you can't just do the
comparison as an anova and use the resulting P-value. Instead you have to use a test that
takes into account the large number of possible comparisons you could have done. For
example, if you did an anova with five groups (A, B, C, D, and E), then noticed that A had
the highest mean and D had the lowest, you couldn't do an anova on just A and D. There
are 10 possible pairs you could have compared (A with B, A with C, etc.) and the
probability under the null hypothesis that one of those 10 pairs is "significant" at the
p<0.05 level is much greater than 0.05. It gets much worse if you consider all of the
possible ways of dividing the groups into two sets (A vs. B, A vs. B+C, A vs. B+C+D,
A+B vs. C+D, etc.) or more than two sets (A vs. B. vs C, A vs. B vs. C+D, etc.).

There is a bewildering array of tests that have been proposed for unplanned
comparisons; some of the more popular include the Student–Neuman–Keuls (SNK) test,
Duncan's multiple range test, the Tukey–Kramer method, the REGWQ method, and
Fisher's Least Significant Difference (LSD). For this handbook, I am only covering two
techniques, Gabriel comparison intervals and the Tukey–Kramer method, that apply only to
unplanned comparisons of pairs of group means.

I will not consider tests that apply to unplanned comparisons of more than two means,
or unplanned comparisons of subsets of groups. There are techniques available for this (the
Scheffé test is probably the most common), but with a moderate number of groups, the
number of possible comparisons becomes so large that the P-values required for
significance become ridiculously small.

Gabriel comparison interval
To compute the Gabriel comparison interval (Gabriel 1978), the standard error of the

mean for a group is multiplied by the studentized maximum modulus times the square root
of one-half. The standard error of the mean is estimated by dividing the MSwithin from the
entire anova by the number of observations in the group, then taking the square root of that
quantity. The studentized maximum modulus is a statistic that depends on the number of
groups, the total sample size in the anova, and the desired probability level (alpha).
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Once the Gabriel comparison interval is calculated, the lower comparison limit is found
by subtracting the interval from the mean, and the upper comparison limit is found by
adding the interval to the mean. This is done for each group in an anova. Any pair of
groups whose comparison intervals do not overlap is significantly different at the P<alpha
level. For example, on the graph of the mussel data shown below, there is a significant
difference in AAM between mussels from Newport and mussels from Petersburg.
Tillamook and Newport do not have significantly different AAM, because their Gabriel
comparison intervals overlap.

Mean AAM (anterior adductor muscle scar standardized by total shell length)
for Mytilus trossulus from five locations. Means are shown with Gabriel
comparison intervals (Gabriel 1978); pairs of means whose comparison

intervals do not overlap are significantly different (P<0.05). Data from the
one-way anova page.

I like Gabriel comparison intervals; the results are about the same as with other
techniques for unplanned comparisons of pairs of means, but you can present them in a
more easily understood form. However, Gabriel comparison intervals are not that
commonly used. If you are using them, it is very important to emphasize that the vertical
bars represent comparison intervals and not the more common (but less useful) standard
errors of the mean or 95% confidence intervals. You must also explain that means whose
comparison intervals do not overlap are significantly different from each other.

Tukey–Kramer method
In the Tukey–Kramer method, the minimum significant difference (MSD) is calculated

for each pair of means. If the observed difference between a pair of means is greater than
the MSD, the pair of means is significantly different.

The Tukey–Kramer method is much more popular than Gabriel comparison intervals. It
is not as easy to display the results of the Tukey–Kramer method, however. One technique
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is to find all the sets of groups whose means do not differ significantly from each other,
then indicate each set with a different symbol, like this:

Location mean AAM Tukey–Kramer
Newport 0.0748 a
Magadan 0.0780 a, b
Tillamook 0.0802 a, b
Tvarminne 0.0957 b, c
Petersburg 0.103 c

Then you explain that "Means with the same letter are not significantly different from each
other (Tukey–Kramer test, P<0.05)."

Another way that is used to illustrate the results of the Tukey–Kamer method is with
lines connecting means that are not significantly different from each other. This is easiest
when the means are sorted from smallest to largest:

Mean AAM (anterior adductor muscle scar standardized by total shell length)
for Mytilus trossulus from five locations. Pairs of means grouped by a

horizontal line are not significantly different from each other (Tukey–Kramer
method, P>0.05).

How to do the tests
Spreadsheet

The one-way anova spreadsheet, described on the anova significance page, calculates
Gabriel comparison intervals. The interval it reports is the number that is added to or
subtracted from the mean to give the Gabriel comparison limits. The spreadsheet also does
the Tukey–Kramer test at the alpha=0.05 level, if you have 20 or fewer groups. The results
of the Tukey–Kramer test are shown on the second sheet of the workbook.
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Web pages
Rweb (http://rweb.stat.umn.edu/cgi-bin/Rweb/buildModules.cgi) is supposed to do

unplanned comparisons, but it doesn't seem to work on my computer. I am not aware of
any other web pages that will calculate either Gabriel comparison intervals or do the
Tukey–Kramer test.

SAS
To calculate Gabriel comparison limits using SAS, add a MEANS statement to PROC

GLM. The first parameter after MEANS is the nominal variable, followed by a forward
slash, then CLM and GABRIEL. CLM tells SAS to report the results of the Gabriel method
as comparison limits. Here's the SAS program from the one-way anova web page, modified
to present Gabriel comparison intervals:

proc glm data=musselshells;
class location;
model aam = location;
means location / clm gabriel;

run;

The results are comparison limits. If you are graphing using a spreadsheet, you'll need to
calculate the comparison interval, the difference between one of the comparison limits and
the mean. For example, the comparison interval for Petersburg is
0.113475−0.103443=0.010032. This is what you put next to the mean on your spreadsheet,
and you select it when you tell the spreadsheet what to add and subtract from the mean for
the "error bars".

location         N          Mean     95% Comparison Limits

Petersbu         7      0.103443     0.093411     0.113475
Tvarminn         6      0.095700     0.084864     0.106536
Tillamoo        10      0.080200     0.071806     0.088594
Magadan          8      0.078013     0.068628     0.087397
Newport          8      0.074800     0.065416     0.084184

For the Tukey–Kramer technique using SAS, add a MEANS statement to PROC GLM.
The first parameter after MEANS is the nominal variable, followed by a forward slash,
then LINES and TUKEY. LINES tells SAS to report the results of the Tukey–Kramer
method by giving means that are not significantly different the same letter. Here's the SAS
program from the one-way anova web page, modified to do the Tukey–Kramer technique:

proc glm data=musselshells;
class location;
model aam = location;
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means location / lines tukey;
run;

Here's the output:

Means with the same letter are not significantly different.

Tukey Grouping          Mean      N    location

A      0.103443      7    Petersbu
A

B    A      0.095700      6    Tvarminn
B
B    C      0.080200     10    Tillamoo
B    C
B    C      0.078013      8    Magadan

C
C      0.074800      8    Newport

Further reading
Sokal and Rohlf, pp. 240-260 (unplanned comparisons in general), 247-249 (Gabriel

comparison intervals).

Zar, pp. 208-222.

Reference
Gabriel, K.R. 1978. A simple method of multiple comparison of means. J. Amer. Stat.

Assoc. 73: 724-729.
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One-way anova: Partitioning
variance components

In a Model II anova with significant heterogeneity among the means, the next step is to
partition the variance into among-group and within-group components. Under the null
hypothesis of homogeneity of means, the among-group mean square and within-group
mean square are both estimates of the within-group parametric variance. If the means are
heterogeneous, the within-group mean square is still an estimate of the within-group
variance, but the among-group mean square estimates the sum of the within-group variance
plus the group sample size times the added variance among groups. Therefore subtracting
the within-group mean square from the among-group mean square, and dividing this
difference by the average group sample size, gives an estimate of the added variance
component among groups. The equation is:

among-group variance=(MSamong−MSwithin)/no

where no is a number that is close to, but usually slightly less than, the arithmetic mean of
the sample size (ni) of each of the a groups:

no=(1/(a−1))*(sum(ni)−(sum(ni2)/sum(ni)).

Each component of the variance is often expressed as a percentage of the total variance
components. Thus an anova table for a one-way anova would indicate the among-group
variance component and the within-group variance component, and these numbers would
add to 100%. In a more complicated anova, there would be several variance components,
but they would still add up to 100%.

Here's an explanation that is not strictly correct (it obscures some of the mathematical
details) but gives an intuitive idea of what it means to partition the variance. Here is a very
simple anova, with just three observations in two categories:

red   blue
10      4
12      5
8      3
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First, calculate the mean for all six observations, which is 7. Subtracting 7 from each
observation and squaring the difference gives you the squared deviates:

red             blue
(10-7)2 = 9      (4-7)2 = 9
(12-7)2 = 25     (5-7)2 = 4
(8-7)2 = 1      (3-7)2 = 16

The sum of these squared deviates is the total sum of squares. In this case, the squared
deviates add up to 64. This number is a measure of how far the individual observations are
from the overall mean.

Next, calculate the mean for red, which is 10, and the mean for blue, which is 4.
Subtract each group's mean from the observations in that group and square the differences:

red             blue
(10-10)2 = 0      (4-4)2 = 0
(12-10)2 = 4      (5-4)2 = 1
(8-10)2 = 4      (3-4)2 = 1

Notice that these squared deviates from the group means are, in general, smaller than the
squared deviates from the overall mean. This makes sense; a member of a group is likely to
be closer to its group's mean than it is to the mean of that group plus some other, different
groups. Adding these squared deviates together gives us the within-group sum of squares,
which in this case is 10. This is a measure of how far the individual observations are from
their group means.

The difference between the total sum of squares and the within-group sum of squares is
the among-group sum of squares. It is a measure of how much smaller the sum of squares
gets when you use group means instead of the overall mean. When the group means are not
very different from each other, they will all be close to the overall mean. In that case, the
squared deviates from the group means will not be much smaller than the squared deviates
from the overall mean, and the among-group sum of squares will be small. When the group
means are very different from each other, the group means will be very different from the
overall mean, the squared deviates from the group means will be a lot smaller, and the
among-group sum of squares will be large.

The among-group sum of squares in this example is 64 minus 10, or 54, while the
within-group sum of squares is 10. Expressed as a percentage of the total, the among-group
variation represents 54/64 = 84.4% of the total; another way of saying this is that the
groups "explain" 84.4% of the variation. The remaining 15.6% of the variation is within
groups.

Because the sums of squares are estimates of population parameters, converting them to
estimates of the variance components is considerably more complicated; the actual estimate
of the among-group component for this example is 87.3% of the total. But the basic idea,
that a larger among-groups component indicates larger differences among the group means
relative to the within-group variation, remains the same.
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Although statisticians say that each level of an anova "explains" a proportion of the
variation, this statistical jargon does not mean that you've found a biological cause-and-
effect explanation. If you measure the number of ears of corn per stalk in 10 random
locations in a field, analyze the data with a one-way anova, and say that the location
"explains" 74.3% of the variation, you haven't really explained anything; you don't know
whether some areas have higher yield because of different water content in the soil,
different amounts of insect damage, different amounts of nutrients in the soil, or random
attacks by a band of marauding corn bandits.

Partitioning the variance components is particularly useful in quantitative genetics,
where the within-family component might reflect environmental variation while the
among-family component reflects genetic variation. Of course, estimating heritability
involves more than just doing a simple anova, but the basic concept is similar.

Another area where partitioning variance components is useful is in designing
experiments. For example, let's say you're planning a big experiment to test the effect of
different drugs on calcium uptake in rat kidney cells. You want to know how many rats to
use, and how many measurements to make on each rat, so you do a pilot experiment in
which you measure calcium uptake on 6 rats, with 4 measurements per rat. You analyze the
data with a one-way anova and look at the variance components. If a high percentage of the
variation is among rats, that would tell you that there's a lot of variation from one rat to the
next, but the measurements within one rat are pretty uniform. You could then design your
big experiment to include a lot of rats for each drug treatment, but not very many
measurements on each rat. Or you could do some more pilot experiments to try to figure
out why there's so much rat-to-rat variation (maybe the rats are different ages, or some have
eaten more recently than others, or some have exercised more) and try to control it. On the
other hand, if the among-rat portion of the variance was low, that would tell you that the
mean values for different rats were all about the same, while there was a lot of variation
among the measurements on each rat. You could design your big experiment with fewer
rats and more observations per rat, or you could try to figure out why there's so much
variation among measurements and control it better.

Partitioning the variance applies only to a model II one-way anova. It doesn't really tell
you anything useful about a model I one-way anova, although sometimes people like to
report it (because they're proud of how much of the variance their groups "explain," I
guess).

Performing the analysis
Spreadsheet

The one-way anova spreadsheet, described on the anova significance page, calculates
the within- and among-group components of variance and displays them as a percentage of
the total.
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Web pages
I don't know of any web pages that will calculate the variance components of an anova.

SAS
PROC GLM doesn't calculate the variance components for an anova. Instead, you use

PROC VARCOMP. You set it up just like PROC GLM, with the addition of
METHOD=TYPE1. The procedure has four different methods for estimating the variance
components, and TYPE1 seems to be the same technique as the one I've described above.
Here's how to do the one-way anova, including estimating the variance components, for the
mussel shell example from the one-way anova page.

proc glm data=musselshells;
class location;
model aam = location;

proc varcomp data=musselshells method=type1;
class location;
model aam = location;

run;

The results include the following:

Type 1 Estimates

Variance Component        Estimate

Var(location)            0.0001254
Var(Error)               0.0001587

The output is not given as a percentage of the total, so you'll have to calculate that. For
these results, the among-group component is 0.0001254/(0.0001254+0.0001586)=0.4415,
or 44.15%; the within-group component is 0.0001587/(0.0001254+0.0001586)=0.5585, or
55.85%.

Further reading
Sokal and Rohlf, pp. 194-197, 214.
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Histogram of dry weights of the amphipod crustacean
Platorchestia platensis.

Normality

One of the assumptions of an
anova and other parametric tests is
that the data are normally distributed.
When you plot a frequency
histogram, the frequencies should
approximate the familiar bell-shaped
normal curve. For example, the
figure shown at the right is a
histogram of dry weights of newly
hatched amphipods (Platorchestia
platensis). It fits the normal curve
pretty well.

Two non-normal histograms.

Other data sets don't fit the normal curve very well. The histogram on the left is the
level of sulfate in Maryland streams (data from the Maryland Biological Stream Survey). It
doesn't fit the normal curve very well, because there are a small number of streams with
very high levels of sulphate. The histogram on the right is the number of egg masses laid
by indivuduals of the lentago host race of the treehopper Enchenopa (unpublished data
courtesy of Michael Cast). The curve is bimodal, with one peak at around 14 egg masses
and the other at zero.
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Like other parametric tests, the analysis of variance assumes that the data fit the normal
distribution. If your measurement variable is not normally distributed, you may be
increasing your chance of a false positive result if you analyze the data with an anova or
other test that assumes normality. Fortunately, an anova is not very sensitive to moderate
deviations from normality, because when you take a large number of random samples from
a population, the means of those samples are approximately normally distributed even
when the population is not normal.

It is possible to test the goodness-of-fit of a data set to the normal distribution. I do not
suggest that you do this, because many data sets that are significantly non-normal would be
perfectly appropriate for an anova.

Instead, if you have a large enough data set, I suggest you just look at the frequency
histogram. If it looks more-or-less normal, go ahead and perform an anova. If it looks like a
normal distribution that has been pushed to one side, like the sulphate data above, you
should try different data transformations and see if any of them make the histogram look
more normal. If that doesn't work, and the data still look severely non-normal, you should
analyze it using a non-parametric test. Just about every parametric statistical test has a non-
parametric substitute, such as the Kruskal–Wallis test instead of a one-way anova,
Wilcoxon signed-rank test instead of a paired t-test, and Spearman rank correlation instead
of linear regression.

Many data sets will not be large enough for a histogram to be meaningful; if you have
fewer than 10 or so observations, you can't really tell whether the data are normally
distributed or not. In that case, you should use your judgement, based on the published
literature, your prior experience, and your understanding of biology. For example, if you
measure heart rate at random times during the day, you should know enough about the
biology of heart rate to know that those numbers won't be normally distributed: the mode
will be around the resting heart rate, with a few values much higher (due to exercise or
stress) and no values much lower than average resting heart rate.
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Graphs illustrating skewness and kurtosis.

Skewness and kurtosis
A histogram with a long tail on the

right side, such as the sulphate data
above, is said to be skewed to the right;
a histogram with a long tail on the left
side is said to be skewed to the left.
There is a statistic to describe skewness,
g1, but I don't know of any reason to
calculate it; there is no rule of thumb
that you shouldn't do an anova if g1 is
greater than some cutoff value.

Another way in which data can
deviate from the normal distribution is
kurtosis. A histogram that has a high
peak in the middle and long tails on
either side is leptokurtic; a histogram
with a broad, flat middle and short tails
is platykurtic. The statistic to describe
kurtosis is g2, but I can't think of any
reason why you'd want to calculate it,
either.

How to look at normality
Spreadsheet

I've written a spreadsheet that will
plot a frequency histogram (http://udel.edu/~mcdonald/stathistogram.xls) for
untransformed, log-transformed and square-root transformed data. It will handle up to 1000
observations.

Web pages
There are several web pages that will produce histograms, but most of them aren't very

good. The interactive histogram (http://www.ruf.rice.edu/~lane/stat_analysis/
histogram.html) web page is pretty cool. You enter your numbers (separated by spaces
only, no tabs or line returns), and when you get a histogram, you can change the "binwidth"
(the size of each interval on the histogram) by sliding a bar.

SAS
You can use the PLOTS option in PROC UNIVARIATE to get a stem-and-leaf display,

which is a kind of very crude histogram. You can also use the HISTOGRAM option to get
an actual histogram, but only if you know how to send the output to a graphics device
driver.
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Further reading
Sokal and Rohlf, pp. 698-703, 406-407.

Zar, pp. 185-188.
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Homoscedasticity and Bartlett's
test

One of the assumptions of an anova and other parametric tests is that the within-group
variances of the groups are all the same (exhibit homoscedasticity). If the variances are
different from each other (exhibit heteroscedasticity), the probability of obtaining a
"significant" result even though the null hypothesis is true is greater than the desired alpha
level. Therefore, it is a good idea to check the homogeneity of variances before doing an
anova. If the variances are very heterogeneous, you should try different transformations
and hope that one of them makes the variances more similar.

Parametric tests are not particularly sensitive to violations of this assumption, so if you
have statistically significant heteroscedasticity no matter what data transformation you try,
you can still do a parametric test unless the variances are dramatically different from each
other. I don't know what level of heteroscedasticity makes a parametric test seriously
misleading.

If the variances of your groups are very heterogeneous no matter what transformation
you apply, it's not always clear what you should do. If you have just two groups, you can
do Welch's t-test instead of Student's t-test; if you have more than two groups, you can do
Welch's anova instead of one-way anova. Non-parametric tests, such as the Kruskal–Wallis
test instead of a one-way anova, do not assume normality, but they do assume that the
shapes of the distributions in different groups are the same, so they are not a solution to the
problem of heteroscedasticity. Of course, once you've examined the normality and
homoscedasticity of your data, you should decide how to transform and analyze it before
you see the results of the anova or other tests.

Bartlett's test
The usual test for homogeneity of variances is Bartlett's test. This test is used when you

have one measurement variable, one nominal variable, and you want to test the null
hypothesis that the variances of the measurement variable are the same for the different
groups. The basic idea is that the natural log of the variance is calculated for each group,
then these are averaged. The variances are also averaged across groups. The average of the
natural logs of the individual variances is subtracted from the natural log of the average
variance. Under the null hypothesis of homogeneity of variances, this statistic is chi-square
distributed with d.f. equal to the number of groups minus one.
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Bartlett's test is not a particularly good one, because it is sensitive to departures from
normality as well as heteroscedasticity. It may be more helpful to use Bartlett's test to see
what effect different transformations have on the heteroscedasticity, choosing the
transformation with the highest (least significant) P-value, rather than take the P values too
seriously; you shouldn't panic just because you have a significant Bartlett's test.

An alternative to Bartlett's test that I won't cover here is Levene's test (http://www.itl.nist.gov/
div898/handbook/eda/section3/eda35a.htm) . It is less sensitive to departures from normality, but if
the data are approximately normal, it is less powerful than Bartlett's test.

For many measurement variables in biology, the coefficient of variation is the same for
different groups. When this occurs, groups with larger means will also have larger
variances. For example, if the petal lengths of red roses and pink roses both have a
coefficient of variation of 20%, and red roses have a mean petal length 10% longer than
pink roses, then the standard deviation of red petal length is 10% larger than for pink petal
length. This means the variance is 21% larger for red roses. This kind of heteroscedasticity,
in which the variance increases as the mean increases, can usually be greatly reduced with
the right data transformation.

While Bartlett's test is usually used when examining data to see if it's appropriate for a
parametric test, there are times when testing the homogeneity of variances is the primary
goal of an experiment. For example, let's say you want to know whether variation in stride
length among runners is related to their level of experience--maybe as people run more,
those who started with unusually long or short strides gradually converge on some ideal
stride length. You could measure the stride length of non-runners, beginning runners,
experienced amateur runners, and professional runners, with several individuals in each
group, then use Bartlett's test to see whether there was significant heterogeneity in the
variances.

How to do Bartlett's test
Spreadsheet

I have put together a spreadsheet that performs Bartlett's test for homogeneity of
variances (http://udel.edu/~mcdonald/statbartletts.xls) for up to 1000 observations in each
of up to 50 groups. It allows you to see what the log or square-root transformation will do.
It also shows a graph of the standard deviations plotted vs. the means. This gives you a
quick visual display of the difference in amount of variation among the groups, and it also
shows whether the mean and standard deviation are correlated.

Entering the mussel shell data from the one-way anova web page into the spreadsheet,
the P-values are 0.655 for untransformed data, 0.856 for square-root transformed, and
0.929 for log-transformed data. None of these is close to significance, so there's no real
need to worry. The graph of the untransformed data hints at a correlation between the mean
and the standard deviation, so it might be a good idea to log-transform the data:
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Standard deviation vs. mean AAM for untransformed and log-transformed data.

Web page
There is web page for Bartlett's test (http://home.ubalt.edu/ntsbarsh/Business-stat/

otherapplets/BartletTest.htm) that will handle up to 14 groups. You have to enter the
variances and sample sizes, not the raw data.

SAS
You can use the HOVTEST=BARTLETT option in the MEANS statement of PROC

GLM to perform Bartlett's test. This modification of the program from the one-way anova
page does Bartlett's test.

proc glm data=musselshells;
class location;
model aam = location;
means location / hovtest=bartlett;

run;

Further reading
Sokal and Rohlf, pp. 398-399.

Zar, pp. 185, 202-204.
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Data transformations

Many biological variables do not meet the assumptions of parametric statistical tests:
they are not normally distributed, the variances are not homogeneous, or both. Using a
parametric statistical test (such as an anova or linear regression) on such data may give a
misleading result. In some cases, transforming the data will make it fit the assumptions
better.

Histograms of number of Eastern mudminnows per 75 m section of stream (samples
with 0 mudminnows excluded). Untransformed data on left, log-transformed data on

right.

To transform data, you perform a mathematical operation on each observation, then use
these transformed numbers in your statistical test. For example, as shown in the first graph
above, the abundance of the fish species Umbra pygmaea (Eastern mudminnow) in
Maryland streams is non-normally distributed; there are a lot of streams with a small
density of mudminnows, and a few streams with lots of them. Applying the log
transformation makes the data more normal, as shown in the second graph.

To transform your data, apply a mathematical function to each observation, then use
these numbers in your statistical test. Here are 12 numbers from the mudminnow data set;
the first column is the untransformed data, the second column is the square root of the
number in the first column, and the third column is the base-10 logarithm of the number in
the first column.
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Untransformed Square-root transformed Log transformed
38 6.164 1.580
1 1.000 0.000
13 3.606 1.114
2 1.414 0.301
13 3.606 1.114
20 4.472 1.301
50 7.071 1.699
9 3.000 0.954
28 5.292 1.447
6 2.449 0.778
4 2.000 0.602
43 6.557 1.633

You do the statistics on the transformed numbers. For example, the mean of the
untransformed data is 18.9; the mean of the square-root transformed data is 3.89; the mean
of the log transformed data is 1.044.

Back transformation
Even though you've done a statistical test on a transformed variable, such as the log of

fish abundance, it is not a good idea to report your means, standard errors, etc. in
transformed units. A graph that showed that the mean of the log of fish per 75 meters of
stream was 1.044 would not be very informative for someone who can't do fractional
exponents in their head. Instead, you should back-transform your results. This involves
doing the opposite of the mathematical function you used in the data transformation. For
the log transformation, you would back-transform by raising 10 to the power of your
number. For example, the log transformed data above has a mean of 1.044 and a 95 percent
confidence interval of 0.344 log-transformed fish. The back-transformed mean would be
101.044=11.1 fish. The upper confidence limit would be 10(1.044+0.344)=24.4 fish, and the
lower confidence limit would be 10(1.044-0.344)=5.0 fish. Note that the confidence limits are
no longer symmetrical; the upper limit is 13.3 fish above the mean, while the lower limit is
6.1 fish below the mean. Also note that you can't just back-transform the confidence
interval and add or subtract that from the back-transformed mean; you can't take 100.344

and add or subtract that to 11.1.

Choosing the right transformation
Data transformations are an important tool for the proper statistical analysis of

biological data. To those with a limited knowledge of statistics, however, they may seem a
bit fishy, a form of playing around with your data in order to get the answer you want. It is
therefore essential that you be able to defend their use. There are an infinite number of
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transformations you could use, but it is better to use a transformation that is commonly
used in your field, such as the square-root transformation for count data or the log
transformation for size data, than an obscure transformation that not many people have
heard of. It is also important that you decide which transformation to use before you do the
statistical test. If you have a large number of observations, compare the effects of different
transformations on the normality and the homoscedasticity of the variable. If you have a
small number of observations, you may not be able to see much effect of the
transformations on the normality and homoscedasticity; in that case, your decision to use a
transformation will be based on the convention in your field for that kind of variable.

Common transformations
There are many transformations that are used occasionally in biology; here are three of

the most common:
Log transformation. This consists of taking the log of each observation. You can use

either base-10 logs (LOG in a spreadsheet, LOG10 in SAS) or base-e logs, also known as
natural logs (LN in a spreadsheet, LOG in SAS). It makes no difference for a statistical test
whether you use base-10 logs or natural logs, because they differ by a constant factor; the
base-10 log of a number is just 2.303…× the natural log of the number. You should specify
which log you're using when you write up the results, as it will affect things like the slope
and intercept in a regression. I prefer base-10 logs, because it's possible to look at them and
see the magnitude of the original number: log(1)=0, log(10)=1, log(100)=2, etc.

The back transformation is to raise 10 or e to the power of the number. If you have
zeros or negative numbers, you can't take the log; you should add a constant to each
number to make them positive and non-zero. If you have count data, and some of the
counts are zero, the convention is to add 0.5 to each number.

Many variables in biology have log-normal distributions, meaning that after log-
transformation, the values are normally distributed. This is because if you take a bunch of
independent factors and multiply them together, the resulting product is log-normal. For
example, let's say you've planted a bunch of maple seeds, then 10 years later you see how
tall the trees are. The height of an individual tree would be affected by the nitrogen in the
soil, the amount of water, amount of sunlight, amount of insect damage, etc. Having more
nitrogen might make a tree 10% larger than one with less nitrogen; the right amount of
water might make it 30% larger than one with too much or too little water; more sunlight
might make it 20% larger; less insect damage might make it 15% larger, etc. Thus the final
size of a tree would be a function of nitrogen×water×sunlight×insects, and mathematically,
this kind of function turns out to be log-normal.

Square-root transformation. This consists of taking the square root of each
observation. The back transformation is to square the number. If you have negative
numbers, you can't take the square root; you should add a constant to each number to make
them all positive.
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The square-root transformation is commonly used when the variable is a count of
something, such as bacterial colonies per petri dish, blood cells going through a capillary
per minute, mutations per generation, etc.

Arcsine transformation. This consists of taking the arcsine of the square root of a
number. This is commonly used for proportions, such as the proportion of female Eastern
mudminnows that are infested by a parasite. Note that this kind of proportion is really a
nominal variable, so it is incorrect to treat it as a measurement variable, whether or not you
arcsine tranform it. For example, it would be incorrect to count the number of
mudminnows that are or are not parasitized each of several streams in Maryland, treat the
arcsine-transformed proportion of parasitized females in each stream as a measurement
variable, then perform a linear regression on these data vs. stream depth. This is because
the proportions from streams with a smaller sample size of fish will have a higher variance
than proportions from streams with larger samples of fish, information that is disregarded
when treating the arcsine-transformed proportions as measurement variables. Instead, you
should use a test designed for nominal variables; in this example, you should do logistic
regression instead of linear regression. If you insist on using the arcsine transformation,
despite what I've just told you, the back-transformation is to square the sine of the number.

How to transform data
Spreadsheet

In a blank column, enter the appropriate function for the transformation you've chosen.
For example, if you want to transform numbers that start in cell A2, you'd go to cell B2 and
enter =LOG(A2) or =LN(A2) to log transform, =SQRT(A2) to square-root transform, or
=ASIN(SQRT(A2)) to arcsine transform. Then copy cell B2 and paste into all the cells in
column B that are next to cells in column A that contain data. To copy and paste the
transformed values into another spreadsheet, remember to use the "Paste Special..."
command, then choose to paste "Values." Using the "Paste Special...Values" command
makes Excel copy the numerical result of an equation, rather than the equation itself. (If
your spreadsheet is Calc, choose "Paste Special" from the Edit menu, uncheck the boxes
labelled "Paste All" and "Formulas," and check the box labelled "Numbers.")

To back-transform data, just enter the inverse of the function you used to transform the
data. To back-transform log transformed data in cell BC, enter =10^B2 for base-10 logs or
=EXP^B2 for natural logs; for square-root transformed data, enter =B2^2; for arcsine
transformed data, enter =SIN(B2^2).

Web pages
I'm not aware of any web pages that will do data transformations.

SAS
To transform data in SAS, read in the original data, then create a new variable with the

appropriate function. This example shows how to create two new variables, square-root
transformed and log transformed, of the mudminnow data.
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data mudminnow;
input location $ banktype $ count;
countlog=log10(count);
countsqrt=sqrt(count);
cards;

Gwynn_1       forest 38
Gwynn_2       urban   1
Gwynn_3       urban  13
Jones_1       urban   2
Jones_2       forest 13
LGunpowder_1  forest 20
LGunpowder_2  field  50
LGunpowder_3  forest  9
BGunpowder_1  forest 28
BGunpowder_2  forest  6
BGunpowder_3  forest  4
BGunpowder_4  field  43
;

The dataset "mudminnow" contains all the original variables (LOCATION, BANKTYPE
and COUNT) plus the new variables (COUNTLOG and COUNTSQRT). You then run
whatever PROC you want and analyze these variables just like you would any others. Of
course, this example does two different transformations only as an illustration; in reality,
you should decide on one transformation before you analyze your data.

The function for arcsine-transforming X is ARSIN(SQRT(X)).
You'll probably find it easiest to backtransform using a spreadsheet or calculator, but if

you really want to do everything in SAS, the function for taking 10 to the X power is
10**X; the function for taking e to a power is EXP(X); the function for squaring X is
X**2; and the function for backtransforming an arcsine transformed number is SIN(X**2).

Further reading
Sokal and Rohlf, pp. 409-422.

Zar, pp. 273-280.
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Kruskal–Wallis test and
Mann–Whitney U test

When to use them
The Kruskal–Wallis test is most commonly used when there is one nominal variable

and one measurement variable, and the measurement variable does not meet the normality
assumption of an anova. It is the non-parametric analogue of a one-way anova. A one-way
anova may yield inaccurate estimates of the P-value when the data are very far from
normally distributed. The Kruskal–Wallis test does not make assumptions about normality.
Like most non-parametric tests, it is performed on ranked data, so the measurement
observations are converted to their ranks in the overall data set: the smallest value gets a
rank of 1, the next smallest gets a rank of 2, and so on. The loss of information involved in
substituting ranks for the original values can make this a less powerful test than an anova,
so the anova should be used if the data meet the assumptions.

If the original data set actually consists of one nominal variable and one ranked
variable, you cannot do an anova and must use the Kruskal–Wallis test.

The Mann–Whitney U-test (also known as the Mann–Whitney–Wilcoxon test, the
Wilcoxon rank-sum test; or Wilcoxon two-sample test) is limited to nominal variables with
only two values; it is the non-parametric analogue to Student's t-test. It uses a different test
statistic (U instead of the H of the Kruskal–Wallis test), but the P-value is mathematically
identical to that of a Kruskal–Wallis test. For simplicity, I will only refer to Kruskal–Wallis
on the rest of this web page, but everything also applies to the Mann–Whitney U-test.

Null hypothesis
The null hypothesis is that the samples come from populations with identical

"locations." Another way of stating this is that the mean ranks of samples from the
populations are expected to be the same.

The Kruskal–Wallis test does not test the null hypothesis that the populations have
identical means, which is the null hypothesis of a one-way anova. It is therefore incorrect to
say something like "The mean amount of substance X was significantly higher in muscle
tissue than in liver (Kruskal–Wallis test, P=0.012)." It also does not test the null hypothesis
that the populations have equal medians, although you will see this error many places,
including some statistics textbooks. To illustrate this point, I made up three sets of numbers
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with identical means (43.5), identical medians (27.5), and a significant (P=0.025)
Kruskal–Wallis test:

Group 1  Group 2  Group 3
1     10     19
2     11     20
3     12     21
4     13     22
5     14     23
6     15     24
7     16     25
8     17     26
9     18     27

46     37     28
47     58     65
48     59     66
49     60     67
50     61     68
51     62     69
52     63     70
53     64     71
342    193     72

Assumptions
The Kruskal–Wallis test does NOT assume that the data are normally distributed; that is

its big advantage. It DOES, however, assume that the observations in each group come
from populations with the same shape of distribution, so if different groups have have
dramatically different shapes (one is skewed to the right and another is skewed to the left,
for example), the Kruskal–Wallis test may give inaccurate results. I don't know what to
suggest in that situation; maybe you could look into some kind of bootstrap analysis.

Heteroscedasticity is one way in which different groups can have different shaped
distributions. If the distributions are normally shaped but highly heteroscedastic, you can
use Welch's t-test or Welch's anova. If the distributions are both non-normal and highly
heteroscedastic, I don't know what to recommend.

How the test works
When working with a measurement variable, the Kruskal–Wallis test starts by

substituting the rank in the overall data set for each measurement value. The smallest value
gets a rank of 1, the second-smallest gets a rank of 2, etc. Tied observations get average
ranks; thus if there were four identical values occupying the fifth, sixth, seventh and eighth
smallest places, all would get a rank of 6.5.

The sum of the ranks is calculated for each group, then the test statistic, H, is
calculated. H is given by a rather formidable formula that basically represents the variance
of the ranks among groups, with an adjustment for the number of ties. H is approximately
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chi-square distributed, meaning that the probability of getting a particular value of H by
chance, if the null hypothesis is true, is the P value corresponding to a chi-square equal to
H; the degrees of freedom is the number of groups minus 1.

If the sample sizes are too small, H does not follow a chi-squared distribution very well,
and the results of the test should be used with caution. N less than 5 in each group seems to
be the accepted definition of "too small."

A significant Kruskal–Wallis test may be followed up by unplanned comparisons of mean
ranks, analogous to the Tukey-Kramer method for comparing means. There is an online calculator
for computing the Least Significant Difference in ranks.

Examples
Bolek and Coggins (2003) collected multiple individuals of the toad Bufo americanus,,

the frog Rana pipiens, and the salamander Ambystoma laterale from a small area of
Wisconsin. They dissected the amphibians and counted the number of parasitic helminth
worms in each individual. There is one measurement variable (worms per individual
amphibian) and one nominal variable (species of amphibian), and the authors did not think
the data fit the assumptions of an anova. The results of a Kruskal–Wallis test were
significant (H=63.48, 2 d.f., P=1.6 X 10-14); the mean ranks of worms per individual are
significantly different among the three species.

McDonald et al. (1996) examined geographic variation in anonymous DNA
polymorphisms (variation in random bits of DNA of no known function) in the American
oyster, Crassostrea virginica. They used an estimator of Wright's FST as a measure of
geographic variation. They compared the FST values of the six DNA polymorphisms to FST
values on 13 proteins from Buroker (1983). The biological question was whether protein
polymorphisms would have generally lower or higher FST values than anonymous DNA
polymorphisms; if so, it would suggest that natural selection could be affecting the protein
polymorphisms. FST has a theoretical distribution that is highly skewed, so the data were
analyzed with a Mann–Whitney U-test.
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gene class FST
CVB1 DNA -0.005
CVB2m DNA 0.116
CVJ5 DNA -0.006
CVJ6 DNA 0.095
CVL1 DNA 0.053
CVL3 DNA 0.003
6Pgd protein -0.005
Aat-2 protein 0.016
Acp-3 protein 0.041
Adk-1 protein 0.016
Ap-1 protein 0.066
Est-1 protein 0.163
Est-3 protein 0.004
Lap-1 protein 0.049
Lap-2 protein 0.006
Mpi-2 protein 0.058
Pgi protein -0.002
Pgm-1 protein 0.015
Pgm-2 protein 0.044
Sdh protein 0.024

The results were not significant (U=0.21, P=0.84), so the null hypothesis that the FST of
DNA and protein polymorphisms have the same mean ranks is not rejected.

Graphing the results
It is tricky to know how to visually display the results of a Kruskal–Wallis test. It

would be misleading to plot the means or medians on a bar graph, as the Kruskal–Wallis
test is not a test of the difference in means or medians. If there are relatively small number
of observations, you could put the individual observations on a bar graph, with the value of
the measurement variable on the Y axis and its rank on the X axis, and use a different
pattern for each value of the nominal variable. Here's an example using the oyster Fst data:
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Fst values for DNA and protein polymorphisms in the American oyster.
Names of DNA polymorphisms have a box around them.

If there are larger numbers of observations, you could plot a histogram for each
category, all with the same scale, and align them vertically. I don't have suitable data for
this handy, so here's an illustration with imaginary data:

Histograms of three sets of numbers.
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Similar tests
One-way anova is more powerful and easier to understand than the Kruskal–Wallis test,

so it should be used unless the data are severely non-normal. There is no firm rule about
how non-normal data can be before an anova becomes inappropriate.

If the data are normally distributed but heteroscedastic, you can use Welch's t-test (for
two groups) or Welch's anova (for more than two groups).

Power analysis
I am not aware of a technique for estimating the sample size needed for a

Kruskal–Wallis test.

How to do the test
Spreadsheet

I have put together a spreadsheet to do the Kruskal–Wallis test (http://udel.edu/
~mcdonald/statkruskalwallis.xls) on up to 20 groups, with up to 1000 observations per
group. Note: If you downloaded this spreadsheet before July 8, 2008, it contained an
error and would give erroneous results if any group had more than 100 observations.
I've fixed the error now.

Web pages
Richard Lowry has web pages for performing the Kruskal–Wallis test for two groups

(http://faculty.vassar.edu/lowry/utest.html) , three groups (http://faculty.vassar.edu/lowry/
kw3.html) , or four groups (http://faculty.vassar.edu/lowry/kw4.html) .

SAS
To do a Kruskal–Wallis test in SAS, use the NPAR1WAY procedure (that's the

numeral "one," not the letter "el," in NPAR1WAY). "Wilcoxon" tells the procedure to only
do the Kruskal–Wallis test; if you leave that out, you'll get several other statistical tests as
well, tempting you to pick the one whose results you like the best. The nominal variable
that gives the group names is given with the "class" parameter, while the measurement or
rank variable is given with the "var" parameter. Here's an example, using the oyster data
from above:

data oysters;
input markername $ markertype $ fst;
cards;

CVB1   DNA      -0.005
CVB2m  DNA       0.116
CVJ5   DNA      -0.006
CVJ6   DNA       0.095
CVL1   DNA       0.053
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CVL3   DNA       0.003
6Pgd   protein  -0.005
Aat-2  protein   0.016
Acp-3  protein   0.041
Adk-1  protein   0.016
Ap-1   protein   0.066
Est-1  protein   0.163
Est-3  protein   0.004
Lap-1  protein   0.049
Lap-2  protein   0.006
Mpi-2  protein   0.058
Pgi    protein  -0.002
Pgm-1  protein   0.015
Pgm-2  protein   0.044
Sdh    protein   0.024
;
proc npar1way data=oysters wilcoxon;
class markertype;
var fst;
run;

The output contains a table of "Wilcoxon scores"; the "mean score" is the mean rank in
each group, which is what you're testing the homogeneity of. "Chi-square" is the H-statistic
of the Kruskal–Wallis test, which is approximately chi-square distributed. The "Pr > Chi-
Square" is your P-value. You would report these results as "H=0.04, 1 d.f., P=0.84."

Wilcoxon Scores (Rank Sums) for Variable fst
Classified by Variable markertype

Sum of   Expected       Std Dev         Mean
markertype    N     Scores   Under H0      Under H0        Score
-----------------------------------------------------------------
DNA           6      60.50       63.0     12.115236     10.083333
protein      14     149.50      147.0     12.115236     10.678571

Kruskal–Wallis Test

Chi-Square         0.0426
DF                      1
Pr > Chi-Square    0.8365
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Further reading
Sokal and Rohlf, pp. 424-426.

Zar, pp. 195-200.
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Nested anova

When to use it
You use a nested anova when you have one measurement variable and two or more

nominal variables. The nominal variables are nested, meaning that each value of one
nominal variable (the subgroups) is found in combination with only one value of the
higher-level nominal variable (the groups). The top-level nominal variable may be either
Model I or Model II, but the lower-level nominal variables must all be Model II.

Nested analysis of variance is an extension of one-way anova in which each group is
divided into subgroups. In theory, these subgroups are chosen randomly from a larger set of
possible subgroups. For example, let's say you are testing the null hypothesis that stressed
and unstressed rats have the same glycogen content in their gastrocnemius muscle. If you
had one cage containing several stressed rats, another cage containing several unstressed
rats, and one glycogen measurement from each rat, you would analyze the data using a one-
way anova. However, you wouldn't know whether a difference in glycogen levels was due
to the difference in stress, or some other difference between the cages--maybe the cage
containing stressed rats gets more food, or is warmer, or happens to contain a mean rat who
uses rat mind-control techniques to enslave all the other rats in the cage and get them to
attack humans.

If, however, you had several cages of stressed rats and several cages of unstressed rats,
with several rats in each cage, you could tell how much variation was among cages and
how much was between stressed and unstressed. The groups would be stressed vs.
unstressed, and each cage of several rats would be a subgroup; each glycogen level of a rat
would be one observation within a subgroup.

The above is an example of a two-level nested anova; one level is the groups, stressed
vs. unstressed, while another level is the subgroups, the different cages. If you worry about
the accuracy of your glycogen assay, you might make multiple assays on each rat. In that
case you would have a three-level nested anova, with groups (stressed vs. unstressed),
subgroups (cages), and subsubgroups (the set of observations on each rat would be a
subsubgroup). You can have more levels, too.

Note that if the subgroups, subsubgroups, etc. are distinctions with some interest
(Model I), rather than random, you should not use a nested anova. For example, you might
want to divide the stressed rats into male and female subgroups, and the same for the
unstressed rats. Male and female are not distinctions without interest; you would be
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interested to know that one sex had higher glycogen levels than the other. In this case you
would use a two-way anova to analyze the data, rather than a nested anova.

Sometimes the distinction can be subtle. For example, let's say you measured the
glycogen content of the right gastrocnemius muscle and left gastrocnemius muscle from
each rat. If you think there might be a consistent right vs. left difference, you would use a
two-way anova to analyze right vs. left and stressed vs. unstressed. If, however, you think
that any difference between the two muscles of an individual rat is due to random variation
in your assay technique, not a real difference between right and left, you could use a nested
anova, with muscles as one level. Think of it this way: if you dissected out the muscles,
labeled the tubes "A" and "B," then forgot which was right and which was left, it wouldn't
matter if you were doing a nested anova; it would be a disaster if you were doing a two-
way anova.

Null hypotheses
A nested anova has one null hypothesis for each level. In a two-level nested anova, one

null hypothesis would be that the subgroups within each group have the same means; the
second null hypothesis would be that the groups have the same means.

Assumptions
Nested anova, like all anovas, assumes that the observations within each subgroup are

normally distributed and have equal variances.

How the test works
Remember that in a one-way anova, the test statistic, Fs, is the ratio of two mean

squares: the mean square among groups divided by the mean square within groups. If the
variation among groups (the group mean square) is high relative to the variation within
groups, the test statistic is large and therefore unlikely to occur by chance. In a two-level
nested anova, there are two F statistics, one for subgroups (Fsubgroup) and one for groups
(Fgroup). The subgroup F-statistic is found by dividing the among-subgroup mean square,
MSsubgroup (the average variance of subgroup means within each group) by the within-
subgroup mean square, MSwithin (the average variation among individual measurements
within each subgroup). The group F-statistic is found by dividing the among-group mean
square, MSgroup (the variation among group means) by MSsubgroup. The P-value is then
calculated for the F-statistic at each level.

For a nested anova with three or more levels, the F-statistic at each level is calculated
by dividing the MS at that level by the MS at the level immediately below it.

If the subgroup F-statistic is not significant, it is possible to calculate the group F-statistic by
dividing MSgroup by MSpooled, a combination of MSsubgroup and MSwithin. The conditions under
which this is acceptable are complicated, and some statisticians think you should never do it; for
simplicity, I suggest always using MSgroup / MSsubgroup to calculate Fgroup.
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Partitioning variance
In addition to testing the equality of the means at each level, a nested anova also

partitions the variance into different levels. This can be a great help in designing future
experiments. For example, let's say you did a four-level nested anova with stressed vs.
unstressed as groups, cages as subgroups, individual rats as subsubgroups, and the two
gastrocnemius muscles as subsubsubgroups, with multiple glycogen assays per muscle. If
most of the variation is among rats, with relatively little variation among muscles or among
assays on each muscle, you might want to do just one assay per rat and use a lot more rats
in your next experiment. This would give you greater statistical power than taking repeated
measurements on a smaller number of rats. If the nested anova tells you there is variation
among cages, you would either want to use more cages or try to control whatever variable
is causing the cages to differ in the glycogen content of their rats; maybe the exercise wheel
is broken in some of the cages, or maybe some cages have more rats than others. If you had
an estimate of the relative cost of different parts of the experiment, such as keeping more
rats vs. doing more muscle preps, formulas are available to help you design the most
statistically powerful experiment for a given amount of money; see Sokal and Rohlf, pp.
309-317.

Mixed-model vs. pure Model II nested anova
All of the subgroups, subsubgroups, etc. in a nested anova should be based on

distinctions of no inherent interest, of the kind analyzed with a Model II one-way anova.
The groups at the top level may also be of no inherent interest, in which case it is a pure
Model II nested anova. This often occurs in quantitative genetics. For example, if you are
interested in estimating the heritability of ammonia content in chicken manure, you might
have several roosters, each with several broods of chicks by different hens, with each chick
having several ammonia assays of its feces. The offspring of each rooster would be the
groups, the offspring of each hen would be the subgroups, and the set of ammonia assays
on each chick would be subsubgroups. This would be a pure Model II anova, because you
would want to know what proportion of the total variation in ammonia content was due to
variation among roosters, as a way of estimating heritability; you wouldn't be interested in
which rooster had offspring with the lowest or highest ammonia content in their feces. In a
pure model II nested anova, partitioning the variance is of primary importance.

If the top-level groups are of inherent interest, of the kind analyzed with a Model I one-
way anova, then it is a mixed-model nested anova. The stressed vs. unstressed rat example
is a mixed-model anova, because stressed vs. unstressed is what you are interested in. The
ammonia in chicken feces example could also be analyzed using a mixed-model nested
anova, if you were really interested in knowing which rooster had offspring with the lowest
ammonia in their feces. This might be the case if you were going to use the best rooster to
sire the next generation of chickens at your farm. In a mixed-model nested anova,
partitioning the variance is of less interest than the significance test of the null hypothesis
that the top-level groups have the same mean. You can then do planned comparisons, just
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as you would for a one-way anova; there are also techniques for doing unplanned
comparisons, which we won't go into here. Even in a mixed model nested anova,
partitioning the variance may help you design better experiments by revealing which level
needs to be controlled better or replicated more.

Unequal sample sizes
When the sample sizes in a nested anova are unequal, the P-values corresponding to the

F-statistics may not be very good estimates of the actual probability. For this reason, you
should try to design your experiments with a "balanced" design, equal sample sizes in each
subgroup. Often this is impractical; if you do have unequal sample sizes, you may be able
to get a better estimate of the correct P-value by using modified mean squares at each level,
found using a correction formula called the Satterthwaite approximation. Under some
situations, however, the Satterthwaite approximation will make the P-values less accurate.
If the Satterthwaite approximation cannot be used, the P-values will be conservative (less
likely to be significant than they ought to be). Note that the Satterthwaite approximation
results in fractional degrees of freedom, such as 2.87.

Example
Keon and Muir (2002) wanted to know whether habitat type affected the growth rate of

the lichen Usnea longissima. They weighed and transplanted 30 individuals into each of 12
sites in Oregon. The 12 sites were grouped into 4 habitat types, with 3 sites in each habitat.
One year later, they collected the lichens, weighed them again, and calculated the change in
weight. There are two nominal variables (site and habitat type), with sites nested within
habitat type. One could analyze the data using two measurement variables, beginning
weight and ending weight, but because the lichen individuals were chosen to have similar
beginning weights, it makes more sense to use the change in weight as a single
measurement variable. The results of a mixed-model nested anova are that there is
significant variation among sites within habitats (F8, 200=8.11, P=1.8 x 10-9) and
significant variation among habitats (F3, 8=8.29, P=0.008). When the Satterthwaite
approximation is used, the test of the effect of habitat is only slightly different (F3,
8.13=8.76, P=0.006)

Students in my section of Advanced Genetics Lab collected data on the codon bias
index (CBI), a measure of the nonrandom use of synonymous codons from genes in
Drosophila melanogaster. The groups are three chromosomes, and the subgroups are small
regions within each chromosome. Each observation is the CBI value for a single gene in
that chromosome region, and there were several genes per region. The data are shown
below in the SAS program.

The results of the nested anova were F3, 30=6.92, P=0.001 for subgroups and F2,
3=0.10, P=0.91 for groups, without the Satterthwaite correction; using the correction
changes the results only slightly. The among-subgroup variation is 49.9% of the total,
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while the among-group variation is 0%. The conclusion is that there is a lot of variation in
CBI among different regions within a chromosome, so in order to see whether there is any
difference among the chromosomes, it will be necessary to sample a lot more regions on
each chromosome. Since 50.1% of the variance is among genes within regions, it will be
necessary to sample several genes within each region, too.

Graphing the results
The way you graph the results of a nested anova depends on the outcome and your

biological question. If the variation among subgroups is not significant and the variation
among groups is significant—you're really just interested in the groups, and you used a
nested anova to see if it was okay to combine subgroups—you might just plot the group
means on a bar graph, as shown for one-way anova. If the variation among subgroups is
interesting, you can plot the means for each subgroup, with different patterns or colors
indicating the different groups. Here's an example for the codon bias data:

Graph of mean codon bias index in different regions
of Drosophila melanogaster chromosomes. Solid

black bars are regions in chromosome 2, gray bars are
chromosome 3, and empty bars are the X

chromosome.

Similar tests
Both nested anova and two-way anova (and higher level anovas) have one

measurement variable and more than one nominal variable. The difference is that in a two-
way anova, the values of each nominal variable are found in all combinations with the
other nominal variable; in a nested anova, each value of one nominal variable (the
subgroups) is found in combination with only one value of the other nominal variable (the
groups).

There doesn't seem to have been a lot of work done on non-parametric alternatives to
nested anova. You could convert the measurement variable to ranks (replace each
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observation with its rank over the entire data set), then do a nested anova on the ranks; see
Conover and Iman (1981).

How to do the test
Spreadsheet

I have made an spreadsheet to do a two-level nested anova (http://udel.edu/~mcdonald/
statnested.xls) , with equal or unequal sample sizes, on up to 50 subgroups with up to 1000
observations per subgroup. It does significance tests and partitions the variance. The
spreadsheet tells you whether the Satterthwaite approximation is appropriate, using the
rules on p. 298 of Sokal and Rohlf (1983), and gives you the option to use it. Fgroup is
calculated as MSgroup/MSsubgroup. The spreadsheet gives the variance components as
percentages of the total. If the estimate of the group component would be negative (which
can happen in unbalanced designs), it is set to zero.

Web page
Rweb (http://bayes.math.montana.edu/cgi-bin/Rweb/buildModules.cgi) lets you do

nested anovas. To use it, choose "ANOVA" from the Analysis Menu and choose "External
Data: Use an option below" from the Data Set Menu, then either select a file to analyze or
enter your data in the box. On the next page (after clicking on "Submit"), select the two
nominal variables under "Choose the Factors" and select the measurement variable under
"Choose the response." Fgroup is calculated as MSgroup/MSwithin, which is not a good idea
if Fsubgroup is significant. Rweb does not partition the variance.

SAS
PROC GLM will handle both balanced and unbalanced designs. List all the nominal

variables in the CLASS statement. In the MODEL statement, give the name of the
measurement variable, then after the equals sign give the name of the group variable, then
the name of the subgroup variable followed by the group variable in parentheses, etc. The
TEST statement tells it to calculate the F-statistic for groups by dividing the group mean
square by the subgroup mean square, instead of the within-group mean square ("h" stands
for "hypothesis" and "e" stands for "error"). "htype=1 etype=1" tells SAS to use "type I
sums of squares"; I couldn't tell you the difference between them and types II, III and IV,
but I'm pretty sure that type I is appropriate for a nested anova.

Here is an example using data on the codon bias index (CBI), a measure of the
nonrandom use of synonymous codons. The groups are two chromosomes in Drosophila
melanogaster, and the subgroups are small regions within each chromosome. Each
observation is the CBI value for a single gene in that chromosome region.

data flies;
input gene $ chrom $ reg $ cbi;
cards;

singed         X      7D     0.366
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====See the web page for the full data set====
sepia          3     66D     0.245
;
proc glm data=flies;

class chrom reg;
model cbi=chrom reg(chrom) / ss1;
test h=chrom e=reg(chrom) / htype=1 etype=1;

run;

The output includes Fgroup calculated two ways, as MSgroup/MSwithin and as
MSgroup/MSsubgroup.

Source     DF Type I SS   Mean Sq.  F Value  Pr > F

chrom       2  0.010326   0.005163   0.66   0.5255 MSgroup/MSwithin
reg(chrom)  3  0.162946   0.054315   6.92   0.0011

Tests of Hypotheses Using the Type I MS for region(chromosome) as an Error Term

Source     DF   Type I SS    Mean Sq.  F Value  Pr > F

chrom       2  0.010326   0.005164   0.10   0.9120 MSgroup/MSsubgroup

PROC GLM does not partition the variance. There is a PROC NESTED that will
partition the variance, but it only does the hypothesis testing for a balanced nested anova,
so if you have an unbalanced design you'll want to run both PROC GLM and PROC
NESTED. PROC NESTED requires that the data be sorted by groups and subgroups. To
use it on the above data, add the following to the end of the above SAS program. PROC
SORT sorts the data by the first variable in the BY statement, then by the second variable.
In PROC NESTED, the group is given first in the CLASS statement, then the subgroup.

proc sort data=flies;
by chromosome region;

proc nested data=flies;
class chromosome region;
var cbi;

run;

As you can see, PROC NESTED didn't calculate the F-statistics or P-values, since the fly
data are unbalanced.

Var.       Sum of   F        Error  Mean   Variance  Percent
Source DF   Sq.   Value Pr>F Term    Sq.    Comp.   of Total
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Total  35  0.4089                  0.0117   0.0157    100.00
chrom   2  0.0103                  0.0052  -0.0042      0.00
reg     3  0.1629                  0.0543   0.0078     49.88
Error  30  0.2356                  0.0079   0.0079     50.12

Further reading
Sokal and Rohlf, pp. 272-308.

Zar, pp. 303-311.

References
Conover, W.J., and R.L. Iman. 1981. Rank transformations as a bridge between parametric

and nonparametric statistics. Am. Statistician 35: 124-129.

Keon, D.B., and P.S. Muir. 2002. Growth of Usnea longissima across a variety of habitats
in the Oregon coast range. Bryologist 105: 233-242.

Handbook of Biological Statistics

168

http://udel.edu/~mcdonald/statintro.html#further
http://udel.edu/~mcdonald/statintro.html#further


Two-way anova

When to use it
You use a two-way anova (also known as a factorial anova, with two factors) when you

have one measurement variable and two nominal variables. The nominal variables (often
called "factors" or "main effects") are found in all possible combinations. For example, let's
say you are testing the null hypothesis that stressed and unstressed rats have the same
glycogen content in their gastrocnemius muscle, and you are worried that there might be
sex-related differences in glycogen content as well. The two factors are stress level
(stressed vs. unstressed) and sex (male vs. female). Unlike a nested anova, each grouping
extends across the other grouping. In a nested anova, you might have "cage 1" and "cage 2"
nested entirely within the stressed group, while "cage 3" and "cage 4" were nested within
the unstressed group. In a two-way anova, the stressed group contains both male and
female rats, and the unstressed group also contains both male and female rats. The factors
used to group the observations may both be model I, may both be model II, or may be one
of each ("mixed model").

A two-way anova may be done with replication (more than one observation for each
combination of the nominal variables) or without replication (only one observation for each
combination of the nominal variables).

Assumptions
Two-way anova, like all anovas, assumes that the observations within each cell are

normally distributed and have equal variances.

Two-way anova with replication
Null hypotheses: The results of a two-way anova with replication include tests of three

null hypotheses: that the means of observations grouped by one factor are the same; that the
means of observations grouped by the other factor are the same; and that there is no
interaction between the two factors. The interaction test tells you whether the effects of one
factor depend on the other factor. In the rat example, imagine that stressed and unstressed
female rats have about the same glycogen level, while stressed male rats had much lower
glycogen levels than unstressed male rats. The different effects of stress on female and
male rats would result in a significant interaction term in the anova. When the interaction
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term is significant, the usual advice is that you should not test the effects of the individual
factors. In this example, it would be misleading to examine the individual factors and
conclude "Stressed rats have lower glycogen than unstressed," when that is only true for
male rats, or "Male rats have lower glycogen than female rats," when that is only true when
they are stressed.

What you can do, if the interaction term is significant, is look at each factor separately,
using a one-way anova. In the rat example, you might be able to say that for female rats,
the mean glycogen levels for stressed and unstressed rats are not significantly different,
while for male rats, stresed rats have a significantly lower mean glycogen level than
unstressed rats. Or, if you're more interested in the sex difference, you might say that male
rats have a significantly lower mean glycogen level than female rats under stress
conditions, while the mean glycogen levels do not differ significantly under unstressed
conditions.

How the test works: When the sample sizes in each subgroup are equal (a "balanced
design"), the mean square is calculated for each of the two factors (the "main effects"), for
the interaction, and for the variation within each combination of factors. Each F-statistic is
found by dividing a mean square by the within-subgroup mean square.

When the sample sizes for the subgroups are not equal (an "unbalanced design"), the
analysis is much more complicated, and there are several different techniques for testing
the main and interaction effects. The details of this are beyond the scope of this handbook.
If you're doing a two-way anova, your statistical life will be a lot easier if you make it a
balanced design.

Two-way anova without replication
Null hypotheses: When there is only a single observation for each combination of the

nominal variables, there are only two null hypotheses: that the means of observations
grouped by one factor are the same, and that the means of observations grouped by the
other factor are the same. It is impossible to test the null hypothesis of no interaction.
Testing the two null hypotheses about the main effects requires assuming that there is no
interaction.

How the test works: The mean square is calculated for each of the two main effects,
and a total mean square is also calculated by considering all of the observations as a single
group. The remainder mean square (also called the discrepance or error mean square) is
found by subtracting the two main effect mean squares from the total mean square. The F-
statistic for a main effect is the main effect mean square divided by the remainder mean
square.

Repeated measures: One experimental design that is analyzed by a two-way anova is
repeated measures, where an observation has been made on the same individual more than
once. This usually involves measurements taken at different time points. For example, you
might measure running speed before, one week into, and three weeks into a program of
exercise. Because individuals would start with different running speeds, it is better to
analyze using a two-way anova, with "individual" as one of the factors, rather than lumping
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everyone together and analyzing with a one-way anova. Sometimes the repeated measures
are repeated at different places rather than different times, such as the hip abduction angle
measured on the right and left hip of individuals. Repeated measures experiments are often
done without replication, although they could be done with replication.

In a repeated measures design, one of main effects is usually uninteresting and the test
of its null hypothesis may not be reported. If the goal is to determine whether a particular
exercise program affects running speed, there would be little point in testing whether
individuals differed from each other in their average running speed; only the change in
running speed over time would be of interest.

Randomized blocks: Another experimental design that is analyzed by a two-way
anova is randomized blocks. This often occurs in agriculture, where you may want to test
different treatments on small plots within larger blocks of land. Because the larger blocks
may differ in some way that may affect the measurement variable, the data are analyzed
with a two-way anova, with the block as one of the nominal variables. Each treatment is
applied to one or more plot within the larger block, and the positions of the treatments are
assigned at random. This is most commonly done without replication (one plot per block),
but it can be done with replication as well.

Examples
Shimoji and Miyatake (2002) raised the West Indian sweetpotato weevil for 14

generations on an artificial diet. They compared these artificial diet weevils (AD strain)
with weevils raised on sweet potato roots (SP strain), the weevil's natural food. Multiple
females of each strain were placed on either the artificial diet or sweet potato root, and the
number of eggs each female laid over a 28-day period was counted. There are two nominal
variables, the strain of weevil (AD or SP) and the oviposition test food (artificial diet or
sweet potato), and one measurement variable (the number of eggs laid).
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Mean total numbers of eggs of females from SP and
AD strains on sweet-potato pieces (mesh bars) and
artificial-diet pieces (hollow bars). Values are mean

Â± SEM. (Fig. 4 from Shimoji and Miyatake [2002]).

The results of the two-way anova
with replication are a significant
effect for weevil strain (F1, 117=8.82,
P=0.0036) and oviposition test food
(F=1, 117=345.92, P=9 x 10-37).
However, there is also a significant
interaction term (F1, 117=17.02, P=7 x
10-5). Both strains lay more eggs on
sweet potato root than on artificial
diet, but the difference is smaller for
the AD strain.

I assayed the activity of the enzyme mannose-6-phosphate isomerase (MPI) in the
amphipod crustacean Platorchestia platensis (McDonald, unpublished data). There are
three genotypes at the locus for MPI, Mpiff, Mpifs, and Mphss, and I wanted to know
whether the genotypes had different activity. Because I didn't know whether sex would
affect activity, I also recorded the sex. Each amphipod was lyophilized, weighed, and
homogenized; then MPI activity of the soluble portion was assayed. The data (in δO.D.
units/sec/mg dry weight) are shown below as part of the SAS example. The results indicate
that the interaction term, the effect of sex and the effect of genotype are all non-significant.

Graphing the results
Sometimes the results of a two-way anova are plotted on a 3-D graph, with the

measurement variable on the Y-axis, one nominal variable on the X-axis, and the other
nominal variable on the Z-axis (going into the paper). This makes it difficult to visually
compare the heights of the bars in the front and back rows, so I don't recommend this.
Instead, I suggest you plot a bar graph with the bars clustered by one nominal variable,
with the other nominal variable identified using the color or pattern of the bars.

Handbook of Biological Statistics

172



Mannose-6-phosphate isomerase activity in
three MPI genotypes in the amphipod

crustacean Platorchestia platensis. Black
bars are Mpiff, gray bars are Mpifs, and

white bars are Mpiss.

If one of the nominal variables is the
interesting one, and the other is just a possible
confounder, I'd group the bars by the possible
confounder and use different patterns for the
interesting variable. For the amphipod data
described above, I was interested in seeing
whether MPI phenotype affected enzyme
activity, with any difference between males and
females as an annoying confounder, so I group
the bars by sex.

Similar tests
A two-way anova without replication and only two values for the interesting nominal

variable may be analyzed using a paired t-test. The results of a paired t-test are
mathematically identical to those of a two-way anova, but the paired t-test is easier to do.
Data sets with one measurement variable and two nominal variables, with one nominal
variable nested under the other, are analyzed with a nested anova.

Data in which the measurement variable is severely non-normal or heteroscedastic may
be analyzed using the non-parametric Friedman's method (http://www.fon.hum.uva.nl/
Service/Statistics/Friedman.html) (for a two-way design without replication) or the
Scheirer–Ray–Hare technique (for a two-way design with replication). See Sokal and Rohlf
(1995), pp. 440-447.

Three-way and higher order anovas are possible, as are anovas combining aspects of a
nested and a two-way or higher order anova. The number of interaction terms increases
rapidly as designs get more complicated, and the interpretation of any significant
interactions can be quite difficult. It is better, when possible, to design your experiments so
that as many factors as possible are controlled, rather than collecting a hodgepodge of data
and hoping that a sophisticated statistical analysis can make some sense of it.

How to do the test
Spreadsheet

I haven't put together a spreadsheet to do two-way anovas.
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Web pages
Web pages are available to perform: a 2x2 two-way anova with replication,

(http://faculty.vassar.edu/lowry/vsanova.html) up to a 6x4 two-way anova without
replication (http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/ANOVATwo.htm) or
with up to 4 replicates. (http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/
ANOVA2Rep.htm)

Rweb (http://bayes.math.montana.edu/cgi-bin/Rweb/buildModules.cgi) lets you do
two-way anovas with or without replication. To use it, choose "ANOVA" from the
Analysis Menu and choose "External Data: Use an option below" from the Data Set Menu,
then either select a file to analyze or enter your data in the box. On the next page (after
clicking on "Submit"), select the two nominal variables under "Choose the Factors" and
select the measurement variable under "Choose the response."

SAS
Use PROC GLM for a two-way anova. Here is an example using the MPI activity data

described above:

data amphipods;
input ID $ sex $ genotype $ activity;
cards;

1       male     ff   1.884
====See the web page for the full data set====
49      male     ss   3.110
;
proc glm data=amphipods;

class sex genotype;
model activity=sex genotype sex*genotype;

run;

The results indicate that the interaction term is not significant (P=0.60), the effect of
genotype is not significant (P=0.84), and the effect of sex concentration not significant
(P=0.77).

Source        DF     Type I SS    Mean Square   F Value    Pr > F

sex            1    0.06808050     0.06808050      0.09    0.7712
genotype       2    0.27724017     0.13862008      0.18    0.8400
sex*genotype   2    0.81464133     0.40732067      0.52    0.6025

Further reading
Sokal and Rohlf, pp. 321-342.

Zar, pp. 231-271.
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Paired t-test

When to use it
You use the paired t-test when there is one measurement variable and two nominal

variables. One of the nominal variables has only two values. The most common design is
that one nominal variable represents different individuals, while the other is "before" and
"after" some treatment. Sometimes the pairs are spatial rather than temporal, such as left vs.
right, injured limb vs. uninjured limb, above a dam vs. below a dam, etc.

An example would be the performance of undergraduates on a test of manual dexterity
before and after drinking a cup of tea. For each student, there would be two observations,
one before the tea and one after. I would expect the students to vary widely in their
performance, so if the tea decreased their mean performance by 5 percent, it would take a
very large sample size to detect this difference if the data were analyzed using a Student's t-
test. Using a paired t-test has much more statistical power when the difference between
groups is small relative to the variation within groups.

The paired t-test is only appropriate when there is just one observation for each
combination of the nominal values. For the tea example, that would be one measurement of
dexterity on each student before drinking tea, and one measurement after drinking tea. If
you had multiple measurements of dexterity on each student before and after drinking tea,
you would do a two-way anova.

Null hypothesis
The null hypothesis is that the mean difference between paired observations is zero.

This is mathematically equivalent to the null hypothesis of a one-way anova or t-test, that
the means of the groups are equal, but because of the paired design of the data, the null
hypothesis of a paired t-test is usually expressed in terms of the mean difference.

Assumption
The paired t-test assumes that the differences between pairs are normally distributed. If

this assumption is violated, it would be better to use the Wilcoxon signed-rank test.
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How the test works
The difference between the observations is calculated for each pair, and the mean and

standard error of these differences are calculated. Dividing the mean by the standard error
of the mean yields a test statistic, ts, that is t-distributed with degrees of freedom equal to
one less than the number of pairs.

Examples
Wiebe and Bortolotti (2002) examined color in the tail feathers of northern flickers.

Some of the birds had one "odd" feather that was different in color or length from the rest
of the tail feathers, presumably because it was regrown after being lost. They measured the
yellowness of one odd feather on each of 16 birds and compared it with the yellowness of
one typical feather from the same bird. There are two nominal variables, type of feather
(typical or odd) and the individual bird, and one measurement variable, yellowness.
Because these birds were from a hybrid zone between red-shafted flickers and yellow-
shafted flickers, there was a lot of variation among birds in color, making a paired analysis
more appropriate. The difference was significant (P=0.001), with the odd feathers
significantly less yellow than the typical feathers (higher numbers are more yellow).

Yellowness index

Typical            Odd
Bird  feather     feather
A    -0.255           -0.324
B    -0.213           -0.185
C    -0.190           -0.299
D    -0.185           -0.144
E    -0.045           -0.027
F    -0.025           -0.039
G    -0.015           -0.264
H     0.003           -0.077
I     0.015           -0.017
J     0.020           -0.169
K     0.023           -0.096
L     0.040           -0.330
M     0.040           -0.346
N     0.050           -0.191
O     0.055           -0.128
P     0.058           -0.182

Wilder and Rypstra (2004) tested the effect of praying mantis excrement on the
behavior of wolf spiders. They put 12 wolf spiders in individual containers; each container
had two semicircles of filter paper, one semicircle that had been smeared with praying
mantis excrement and one without excrement. They observed each spider for one hour, and
measured its walking speed while it was on each half of the container. There are two
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nominal variables, filter paper type (with or without excrement) and the individual spider,
and one measurement variable (walking speed). Different spiders may have different
overall walking speed, so a paired analysis is appropriate to test whether the presence of
praying mantis excrement changes the walking speed of a spider. The mean change in
walking speed is almost, but not quite, significantly different from 0 (t=2.11, 11 d.f.,
P=0.053).

Graphing the results
If there are a moderate number of pairs, you could either plot each individual value on a

bar graph, or plot the differences. Here is one graph in each format for the flicker data:

Colors of tail feathers in the northern flicker. The graph on the top
shows the yellowness index for a "typical" feather with a black bar

and an "odd" feather with a gray bar. The graph on the bottom
shows the difference (typical − odd).

Related tests
The paired t-test is mathematically equivalent to one of the hypothesis tests of a two-

way anova without replication. The paired t-test is simpler to perform and may be more
familiar. A two-way anova would be better if both null hypotheses (equality of means of
the two treatments and equality of means of the individuals) were of interest; in a paired t-
test, the means of individuals are so likely to be different that there's no point in testing
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them. A two-way anova would have to be used if the measurements are replicated for the
treatment/individual combinations.

If the paired nature of the data is ignored, the data would be analyzed using a one-way
anova or a regular t-test. The loss in statistical power can be quite dramatic, however, so
this is not a good idea.

One non-parametric analogue of the paired t-test is Wilcoxon signed-rank test. A
simpler and even less powerful test is the sign test, which considers only the direction of
difference between pairs of observations, not the size of the difference.

How to do the test
Spreadsheet

Spreadsheets have a built-in function to perform paired t-tests. Put the "before"
numbers in one column, and the "after" numbers in the adjacent column, with the before
and after observations from each individual on the same row. Then enter =TTEST(array1,
array2, tails, type), where array1 is the first column of data, array2 is the second column
of data, tails is normally set to 2 for a two-tailed test, and type is set to 1 for a paired t-test.
The result of this function is the P-value of the paired t-test.

Web pages
There are web pages to do paired t-tests here (http://www.fon.hum.uva.nl/Service/

Statistics/Student_t_Test.html) , here (http://faculty.vassar.edu/lowry/t_corr_stats.html) ,
here (http://www.physics.csbsju.edu/stats/Paired_t-test_NROW_form.html) , and here
(http://graphpad.com/quickcalcs/ttest1.cfm) .

SAS
To do a paired t-test in SAS, you use PROC TTEST with the PAIRED option. Here is

an example using the feather data from above:

data feathers;
input bird typical odd;
cards;

A    -0.255           -0.324
B    -0.213           -0.185
C    -0.190           -0.299
D    -0.185           -0.144
E    -0.045           -0.027
F    -0.025           -0.039
G    -0.015           -0.264
H     0.003           -0.077
I     0.015           -0.017
J     0.020           -0.169
K     0.023           -0.096
L     0.040           -0.330
M     0.040           -0.346
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N     0.050           -0.191
O     0.055           -0.128
P     0.058           -0.182

;
proc ttest data=feathers;

paired typical*odd;
run;

The results include the following, which shows that the P-value is 0.0010:

T-Tests
Difference             DF    t Value    Pr > |t|
typical - odd          15       4.06      0.0010

Further reading
Sokal and Rohlf, pp. 698-703, 729-730.

Zar, pp. 161-164.
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Wilcoxon signed-rank test

When to use it
You use the Wilcoxon signed-rank test when there are two nominal variables and one

measurement variable. One of the nominal variables has only two values, such as "before"
and "after," and the other nominal variable often represents individuals. This is the non-
parametric analogue to the paired t-test, and should be used if the distribution of differences
between pairs may be non-normally distributed.

Null hypothesis
The null hypothesis is that the median difference between pairs of observations is zero.

Note that this is different from the null hypothesis of the paired t-test, which is that the
mean difference between pairs is zero, or the null hypothesis of the sign test, which is that
the numbers of differences in each direction are equal.

How it works
The absolute value of the differences between observations are ranked from smallest to

largest, with the smallest difference getting a rank of 1, then next larger difference getting a
rank of 2, etc. Ties are given average ranks. The ranks of all differences in one direction are
summed, and the ranks of all differences in the other direction are summed. The smaller of
these two sums is the test statistic, W (sometimes symbolized Ts). Unlike most test
statistics, smaller values of W are less likely under the null hypothesis.

Examples
Laureysens et al. (2004) measured metal content in the wood of 13 poplar clones

growing in a polluted area, once in August and once in November. Concentrations of
aluminum (in micrograms of Al per gram of wood) are shown below.

Clone            Aug   Nov

Balsam Spire     8.1  11.2
Beaupre         10.0  16.3
Hazendans       16.5  15.3
Hoogvorst       13.6  15.6
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Raspalje         9.5  10.5
Unal             8.3  15.5
Columbia River  18.3  12.7
Fritzi Pauley   13.3  11.1
Trichobel        7.9  19.9
Gaver            8.1  20.4
Gibecq           8.9  14.2
Primo           12.6  12.7
Wolterson       13.4  36.8

There are two nominal variables: time of year (August or November) and poplar clone
(Balsam Spire, Beaupre, etc.), and one measurement variable (micrograms of aluminum per
gram of wood). There are not enough observations to confidently test whether the
differences between August and November are normally distributed, but they look like they
might be a bit skewed; the Wolterson clone, in particular, has a much larger difference than
any other clone. To be safe, the authors analyzed the data using a signed-rank test. The
median change from August to November (3.1 micrograms Al/g wood) is significantly
different from zero (W=16, P=0.040).

Buchwalder and Huber-Eicher (2004) wanted to know whether turkeys would be less
aggressive towards unfamiliar individuals if they were housed in larger pens. They tested
10 groups of three turkeys that had been reared together, introducing an unfamiliar turkey
and then counting the number of times it was pecked during the test period. Each group of
turkeys was tested in a small pen and in a large pen. There are two nominal variables, size
of pen (small or large) and the group of turkeys, and one measurement variable (number of
pecks per test). The median difference between the number of pecks per test in the small
pen vs. the large pen was significantly greater than zero (W=10, P=0.04).

Ho et al. (2004) inserted a plastic implant into the soft palate of 12 chronic snorers to
see if it would reduce the volume of snoring. Snoring loudness was judged by the sleeping
partner of the snorer on a subjective 10-point scale. There are two nominal variables, time
(before the operations or after the operation) and individual snorer, and one measurement
variable (loudness of snoring). One person left the study, and the implant fell out of the
palate in two people; in the remaining nine people, the median change in snoring volume
was significantly different from zero (W=0, P=0.008).

Graphing the results
You should graph the data for a signed rank test the same way you would graph the

data for a paired t-test, a bar graph with either the values side-by-side for each pair, or the
differences at each pair.
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Similar tests
Paired observations of a measurement variable may be analyzed using a paired t-test, if

the null hypothesis is that the mean difference between pairs of observations is zero and the
differences are normally distributed. The sign test is used when the null hypothesis is that
there are equal number of differences in each direction.

How to do the test
Spreadsheet

I have prepared a spreadsheet to do the Wilcoxon signed-rank test (http://udel.edu/
statsignedrank.xls) . It will handle up to 1000 pairs of observations.

Web page
There is a web page (http://www.fon.hum.uva.nl/Service/Statistics/

Signed_Rank_Test.html) that will perform the Wilcoxon signed-rank test. You may enter
your paired numbers directly onto the web page; it will be easier if you enter them into a
spreadsheet first, then copy them and paste them into the web page.

SAS
To do Wilcoxon signed-rank test in SAS, you first create a new variable that is the

difference between the two observations. You then run PROC UNIVARIATE on the
difference, which automatically does the Wilcoxon signed-rank test along with several
others. Here's an example using the poplar data from above:

data poplars;
input clone $ aug_al nov_al;
diff=aug_al-nov_al;
cards;

Balsam_Spire     8.1  11.2
Beaupre         10.0  16.3
Hazendans       16.5  15.3
Hoogvorst       13.6  15.6
Raspalje         9.5  10.5
Unal             8.3  15.5
Columbia_River  18.3  12.7
Fritzi_Pauley   13.3  11.1
Trichobel        7.9  19.9
Gaver            8.1  20.4
Gibecq           8.9  14.2
Primo           12.6  12.7
Wolterson       13.4  36.8
;
proc univariate data=poplars;
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var diff;
run;

PROC UNIVARIATE returns a bunch of descriptive statistics that you don't need; the
result of the Wilcoxon signed-rank test is shown in the row labelled "Signed rank":

Tests for Location: Mu0=0

Test           -Statistic-    -----p Value------

Student's t    t   -2.3089    Pr > |t|    0.0396
Sign           M      -3.5    Pr >= |M|   0.0923
Signed Rank    S     -29.5    Pr >= |S|   0.0398

Further reading
Sokal and Rohlf, pp. 440-444.

Zar, pp. 165-169.
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Sign test

When to use it
You use the sign test when there are two nominal variables and one measurement

variable or ranked variable. One of the nominal variables has only two values, such as
"before" and "after" or "left" and "right," and the other nominal variable identifies the pairs
of observations. The data could be analyzed using a paired t-test or a Wilcoxon signed-rank
test, if the null hypothesis is that the mean or median difference between pairs of
observations is zero. The sign test is used to test the null hypothesis that there are equal
numbers of differences in each direction.

One situation in which a sign test is appropriate is when the biological null hypothesis
is that there may be large differences between pairs of observations, but they are random in
direction. For example, let's say you want to know whether copper pennies will reduce the
number of mosquito larvae in backyard ponds. You measure the abundance of larvae in
your pond, add some pennies, then measure the abundance of larvae again a month later.
You do this for several other backyard ponds, with the before- and after-pennies
measurements at different times in the summer for each pond. Based on prior research, you
know that mosquito larvae abundance varies a lot throughout the summer, due to variation
in the weather and random fluctuations in the number of adult mosquitoes that happen to
find a particular pond; even if the pennies have no effect, you expect big differences in the
abundance of larvae between the before and after samples. The random fluctuations in
abundance would be random in direction, however, so if the pennies have no effect, you'd
expect half the ponds to have more larvae before adding the pennies, and half the ponds to
have more larvae after adding pennies.

To see why a paired t-test would be inappropriate for the mosquito experiment, imagine
that you've done the experiment in a neighborhood with 100 backyard ponds. Due to
changes in the weather, etc., the abundance of mosquito larvae increases in half the ponds
and decreases in half the ponds; in other words, the probability that a random pond will
decrease in mosquito larvae abundance is 0.5. If you do the experiment on four ponds
picked at random, and all four happen show the same direction of difference (all four
increase or all four decrease) even though the pennies really have no effect, you'll probably
get a significant paired t-test. However, the probability that all four ponds will show the
same direction of change is 2×0.54, or 0.125. Thus you'd get a "significant" P-value from
the paired t-test 12.5% of the time, which is much higher than the P<0.05 you want.
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The other time you'd use a sign test is when you don't know the size of the difference,
only its direction; in other words, you have a ranked variable with only two values,
"greater" and "smaller." For example, let's say you're comparing the abundance of adult
mosquitoes between your front yard and your back yard. You stand in your front yard for
five minutes, swatting at every mosquito that lands on you, and then you stand in your back
yard for five minutes. You intend to count every mosquito that lands on you, but they are
so abundant that soon you're dancing around, swatting yourself wildly, with no hope of
getting an accurate count. You then repeat this in your back yard and rate the mosquito
abundance in your back yard as either "more annoying" or "less annoying" than your front
yard. You repeat this on several subsequent days. You don't have any numbers for
mosquito abundance, but you can do a sign test and see whether there are significantly
more times where your front yard has more mosquitoes than your back yard, or vice versa.

Null hypothesis
The null hypothesis is that an equal number of pairs of observations have a change in

each direction. If the pairs are "before" and "after," the null hypothesis would be that the
number of pairs showing an increase equals the number showing a decrease.

Note that this is different from the null hypothesis tested by a paired t-test, which is that
the mean difference between pairs is zero. The difference would be illustrated by a data set
in which 19 pairs had an increase of 1 unit, while one pair had a decrease of 19 units. The
19: 1 ratio of increases to decreases would be highly significant under a sign test, but the
mean change would be zero.

Examples
Farrell et al. (2001) estimated the evolutionary tree of two subfamilies of beetles that

burrow inside trees as adults. They found ten pairs of sister groups in which one group of
related species, or "clade," fed on angiosperms and one fed on gymnosperms, and they
counted the number of species in each clade. There are two nominal variables, food source
(angiosperms or gymnosperms) and pair of clades (Corthylina vs. Pityophthorus, etc.) and
one measurement variable, the number of species per clade.

The biological null hypothesis is that although the number of species per clade may
vary widely due to a variety of unknown factors, whether a clade feeds on angiosperms or
gymnosperms will not be one of these factors. In other words, you expect that each pair of
related clades will differ in number of species, but half the time the angiosperm-feeding
clade will have more species, and half the time the gymnosperm-feeding clade will have
more species.

Applying a sign test, there are 10 pairs of clades in which the angiosperm-specialized
clade has more species, and 0 pairs with more species in the gymnosperm-specialized
clade; this is significantly different from the null expectation (P=0.002), and you can reject
the null hypothesis and conclude that in these beetles, clades that feed on angiosperms tend
to have more species than clades that feed on gymnosperms.

Handbook of Biological Statistics

186

http://udel.edu/~mcdonald/stathyptesting.html#null


Angiosperm-feeding       Spp.    Gymonsperm-feeding       Spp.

Corthylina                 458   Pityophthorus              200
Scolytinae                5200   Hylastini+Tomacini         180
Acanthotomicus+Premnobious 123   Orhotomicus                 11
Xyleborini/Dryocoetini    1500   Ipini                      195
Apion                     1500   Antliarhininae              12
Belinae                    150   Allocoryninae+Oxycorinae    30
Higher Curculionidae     44002   Nemonychidae                85
Higher Cerambycidae      25000   Aseminae+Spondylinae        78
Megalopodinae              400   Palophaginae                 3
Higher Chrysomelidae     33400   Aulocoscelinae+Orsodacninae 26

Sherwin (2004) wanted to know whether laboratory mice preferred having a mirror in
their cage. He set up 16 pairs of connected cages, one with a mirror and one without, and
put a solitary mouse in each pair of cages. He then measured the amount of time each
mouse spent in each of its two cages. There are two nominal variables, mirror (present or
absent) and the individual mouse, and one measurement variable, the time spent in each
cage. Three of the 16 mice spent more time in the cage with a mirror, and 13 mice spent
more time in the cage without a mirror. The result or a sign test is P=0.021, so you can
reject the null hypothesis that the number of mice that prefer a mirror equals the number of
mice that prefer not having a mirror.

McDonald (1991) counted allele frequencies at the mannose-6-phosphate (MPI) locus
in the amphipod crustacean Orchestia grillus from six bays on the north shore of Long
Island, New York. At each bay two sites were sampled, one outside the bay ("exposed")
and one inside the bay ("protected"). There are three nominal variables: allele ("fast" or
"slow"), habitat ("exposed" or "protected"), and bay. The allele frequencies at each bay
were converted to a ranked variable with two values: Mpifast more common at the exposed
site than the protected site, or Mpifast less common at the exposed site. At all six bays,
Mpifast was less common at the exposed site, which is significant by a sign test (P=0.03).

Note that this experimental design is identical to the study of Lap allele frequencies in
the mussel Mytilus trossulus inside and outside of Oregon estuaries that was used as an
example for the Cochran–Mantel–Haenszel test. Although the experimental designs are the
same, the biological questions are different, which makes the Cochran–Mantel–Haenszel
test appropriate for the mussels and the sign test appropriate for the amphipods.

Two evolutionary processes can cause allele frequencies to be different between
different locations, natural selection or random genetic drift. Mussels have larvae that float
around in the water for a few weeks before settling onto rocks, so I considered it very
unlikely that random genetic drift would cause a difference in allele frequencies between
locations just a few kilometers apart. Therefore the biological null hypothesis is that the
absence of natural selection keeps the allele frequencies the same inside and outside of
estuaries; any difference in allele frequency between marine and estuarine habitats would
be evidence for natural selection. The Cochran–Mantel–Haenszel test is a test of the
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statistical null hypothesis that the allele frequencies are the same in the two habitats, so the
significant result is evidence that Lap in the mussels is affected by natural selection.

The amphipod Orchestia grillus does not have larvae that float in the water; the female
amphipods carry the young in a brood pouch until they're ready to hop around on their
own. The amphipods live near the high tide line in marshes, so the exposed and protected
sites are likely to be well isolated populations with little migration between them.
Therefore differences between exposed and protected sites due to random genetic drift are
quite likely, and it wouldn't have been very interesting to find them. Random genetic drift,
however, is random in direction; if it were the only process affecting allele frequencies, the
Mpifast allele would be more common inside half the bays and less common inside half the
bays. The significant sign test indicates that the direction of difference in allele frequency is
not random, so the biological null hypothesis of differences due to random drift can be
rejected and the alternative hypothesis of differences due to natural selection can be
accepted.

Graphing the results
You should graph the data for a sign test the same way you would graph the data for a

paired t-test, a bar graph with either the values side-by-side for each pair, or the differences
at each pair.

Similar tests
Paired observations of a measurement variable may be analyzed using a paired t-test, if

the null hypothesis is that the mean difference between pairs of observations is zero, or a
Wilcoxon signed-rank test, if the null hypothesis is that the median difference between
pairs of observations is zero. The sign test is used when the null hypothesis is that there are
equal number of differences in each direction.

How to do the test
Spreadsheet

First, count the number of pairs of observations with an increase (plus signs) and the
number of pairs with a decrease (minus signs). Ignore pairs with no difference. Compare
the ratio of plus signs: minus signs to the expected 1:1 ratio using the exact binomial test
(http://udel.edu/~mcdonald/statexactbin.html) spreadsheet.

Web page
You can use Richard Lowry'sexact binomial test web page (http://faculty.vassar.edu/

lowry/binomialX.html) to do a sign test, once you've counted the number of differences in
each direction by hand.
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SAS
PROC UNIVARIATE automatically does a sign test; see the example on the Wilcoxon

signed-rank web page.

Further reading
Sokal and Rohlf, pp. 444-445.

Zar, pp. 538-539.
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Correlation and linear
regression

Introduction
I find the descriptions of correlation and regression in most textbooks to be

unnecessarily confusing. Some statistics textbooks have correlation and linear regression in
separate chapters, and make it seem as if it is important to pick one technique or the other,
based on subtle differences in the design and assumptions of the experiment. I think this
overemphasizes the differences between them. Other books muddle correlation and
regression together, leading the reader puzzled about what the difference is.

My understanding of the two techniques, as they are practiced, is that they primarily
differ in goals. The goal of a correlation analysis is to see whether two measurement
variables covary, and to measure the strength of any relationship between the variables.
The results of correlation are expressed as a P-value (for the hypothesis test) and an r-value
(correlation coefficient) or r2 value (coefficient of determination). The goal of linear
regression is to find the equation (slope and intercept) of the line that best fits the points;
this line is then used as a visual summary of the relationship between the variables, or for
estimating unknown values of one variable when given the value of the other.

When you have two measurement variables in biology, you'll usually want to do both
correlation and regression—you'll want the P-value of the hypothesis test, and the r2 that
describes the strength of the relationship, and the regression line that illustrates the
relationship. It would be less confusing if there were a single name for the whole process,
just like "anova" includes testing hypotheses, partitioning variance, and estimating means.
Since there isn't a single name, one option is to refer to the P-value and r2 as resulting from
a correlation analysis, while the equation of the line results from linear regression: "The
correlation of variables X and Y is significant (r2=0.89, P=0.007); the linear regression line
is shown in the figure." It is also common to say something like "The linear regression of Y
on X is significant (r2=0.89, P=0.007)"; either seems appropriate. The one thing you should
not do is call a linear regression line a "correlation line"; if that means anything, it means
something different from a regression line.

Here I'll treat correlation and linear regression as different aspects of a single analysis.
Be aware that this approach will probably be different from what you'll see elsewhere.
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When to use them
Correlation and linear regression are used when you have two measurement variables,

such as food intake and weight, drug dosage and blood pressure, air temperature and
metabolic rate, etc.

There's also one nominal variable that keeps the two measurements together in pairs,
such as the name of an individual organism. I'm not aware that anyone else considers this
nominal variable to be part of correlation and regression, and it's not something you need to
know the value of—you could indicate that a food intake measurement and weight
measurement came from the same rat by putting both numbers on the same line, without
ever giving the rat a name. For that reason, I'll call it a "hidden" nominal variable.

The data are typically plotted as a scatter of points on a graph, with one variable on the
X axis and the other variable on the Y axis. The goals are to find the equation for the line
that best fits these points, and to determine whether the slope of this line is significantly
different from zero. If the slope is significantly different from zero, there is a significant
relationship between the two variables: as the values of one variable increase, the values of
the other variable either tend to increase (if the slope is positive) or tend to decrease (if the
slope is negative).

There are three main uses for correlation and regression in biology. One is to test
hypotheses about cause-and-effect relationships. In this case, the experimenter determines
the values of the X-variable and sees whether variation in X causes variation in Y. An
example would be giving people different amounts of a drug and measuring their blood
pressure. The null hypothesis would be that there was no relationship between the amount
of drug and the blood pressure. If the null hypothesis is rejected, the conclusion would be
that the amount of drug causes changes in the blood pressure.

The second main use for correlation and regression is to see whether two variables are
associated, without necessarily inferring a cause-and-effect relationship. In this case,
neither variable is determined by the experimenter; both are naturally variable. If an
association is found, the inference is that variation in X may cause variation in Y, or
variation in Y may cause variation in X, or variation in some other factor may affect both X
and Y. An example would be measurements of the amount of a particular protein on the
surface of some cells and the pH of the cytoplasm of those cells. If the protein amount and
pH are correlated, it may be that the amount of protein affects the internal pH; or the
internal pH affects the amount of protein; or some other factor, such as oxygen
concentration, affects both protein concentration and pH. Often, a significant correlation
suggests further experiments to test for a cause and effect relationship; if protein
concentration and pH were correlated, you might want to manipulate protein concentration
and see what happens to pH, or manipulate pH and measure protein, or manipulate oxygen
and see what happens to both.

The third common use of linear regression is estimating the value of one variable
corresponding to a particular value of the other variable. For example, if you were doing a
protein assay you would start by constructing a standard curve. You would add the reagent
to known amounts of protein (10, 20, 30 mg, etc.) and measure the absorbance. You would
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then find the equation for the regression line, with protein amount as the X variable and
absorbance as the Y variable. Then when you measure the absorbance of a sample with an
unknown amount of protein, you can rearrange the equation of the regression line to solve
for X and estimate the amount of protein in the sample.

Null hypothesis
The null hypothesis is that the slope of the best-fit line is equal to zero; in other words,

as the X variable gets larger, the associated Y variable gets neither higher nor lower.
It is also possible to test the null hypothesis that the Y value predicted by the regression

equation for a given value of X is equal to some theoretical expectation; the most common
would be testing the null hypothesis that the Y intercept is 0. This is rarely necessary in
biological experiments, so I won't cover it here, but be aware that it is possible.

Independent vs. dependent variables
If a cause-and-effect relationship is being tested, the variable that causes the

relationship is called the independent variable and is plotted on the X axis, while the effect
is called the dependent variable and is plotted on the Y axis. In some cases the
experimenter determines the value of the independent variable, such as putting frogs in
temperature-controlled chambers and measuring their calling rate. In other cases, both
variables exhibit natural variation, but any cause-and-effect relationship would be in one
way; if you measure the air temperature and frog calling rate at a pond on several different
nights, both the air temperature and the calling rate would display natural variation, but if
there's a cause-and-effect relationship, it's temperature affecting calling rate and not calling
rate affecting air temperature.

Sometimes it's not clear which is the independent variable and which is the dependent.
For example, if you measure the salt content of people's food and their blood pressure to
test whether eating more salt causes higher blood pressure, you'd want to make salt content
the independent variable. But if you thought that high blood pressure caused people to
crave high-salt foods, you'd make blood pressure the independent variable.

Sometimes, you're not looking for a cause-and-effect relationship at all; if you measure
the range-of-motion of the hip and the shoulder, you're not trying to see whether more
flexible hips cause more flexible shoulders, or vice versa, you're just trying to see if people
with more flexible hips also tend to have more flexible shoulders, presumably due to some
factor (age, diet, exercise, genetics) that affects overall flexibility. In this case, it would be
completely arbitrary which variable you put on the X axis and which you put on the Y axis.

Fortunately, the P-value and the r2 are not affected by which variable you call the X
and which you call the Y; you'll get mathematically identical values either way. The
regression line does depend on which variable is the X and which is the Y; the two lines
can be quite different if the r2 is low. If you're truly interested only in whether the two
variables covary, and you are not trying to infer a cause-and-effect relationship, you may
want to avoid using the linear regression line as decoration on your graph.
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In some fields, the independent variable is traditionally plotted on the Y axis. In
oceanography, for example, depth is often plotted on the Y axis (with 0 at the top) and a
variable that is directly or indirectly affected by depth, such as chlorophyll concentration, is
plotted on the X axis. I wouldn't recommend this unless it's a really strong tradition in your
field, as it could lead to confusion about which variable is the independent variable in a
linear regression.

How the test works

The graph shows the data points (dots), linear regression line
(thick line), and data points connected to the point on the

regression line with the same X value (thin lines). The regression
line is the line that minimizes the sum of the squared vertical

distances between the points and the line.

Regression line
Linear regression finds the line that best fits the data points. In this case, the "best" fit is

defined as the line that minimizes the squared vertical distances between the data points
and the line. For a data point with an X value of X1 and a Y value of Y1, the difference
between Y1 and the value of Y on the line at X1 is calculated, then squared. This squared
deviate is calculated for each data point, and the sum of these squared deviates measures
how well a line fits the data. The regression line is the one for which this sum of squared
deviates is smallest.

The equation for the regression line is usually expressed as Y=intercept+slope×X. This
equation can be used to predict the value of Y for a given value of X. You can also predict
X from Y, using the equation X=(Y−intercept)/slope. These predictions are best done
within the range of X and Y values observed in the data (interpolation). Predicting Y or X
values outside the range of observed values (extrapolation) is sometimes interesting, but it
can easily yield ridiculous results. For example, in the frog example below, you could
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mathematically predict that the inter-call interval would be about 16 seconds at -40 C.
Actually, the frogs would not call at that temperature; they'd be dead.

Coefficient of determination (r2)

Three relationships with the same slope, same intercept, and different amounts of scatter
around the best-fit line.

The coefficient of determination, or r2, expresses the strength of the relationship
between the X and Y variables. It is the proportion of the variation in the Y variable that is
"explained" by the variation in the X variable. r2 can vary from 0 to 1; values near 1 mean
the Y values fall almost right on the regression line, while values near 0 mean there is very
little relationship between X and Y. As you can see, regressions can have a small r2 and not
look like there's any relationship, yet they still might have a slope that's significantly
different from zero.

To illustrate the meaning of r2, here are six pairs of X and Y values:

deviate     squared
X     Y    from mean    deviate

---   ---   ---------    -------
1     2        8          64
3     9        1           1
5     9        1           1
6    11        1           1
7    14        4          16
9    15        5          25

If you didn't know anything about the X value and were told to guess what a Y value was,
your best guess would be the mean Y; for this example, the mean Y is 10. The squared
deviates of the Y values from their mean is the total sum of squares, familiar from analysis
of variance. The vertical lines on the left graph below show the deviates from the mean; the
first point has a deviate of 8, so its squared deviate is 64, etc. The total sum of squares for
these numbers is 64+1+1+1+16+25=108.
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Deviations from the mean Y and from the regression line.

If you did know the X value and were told to guess what a Y value was, you'd calculate
the regression equation and use it. The regression equation for these numbers is
Y=1.5429×X+2.0286, so for the first X value you'd predict a Y value of
1.5429×1+2.0286=3.5715, etc. The vertical lines on the right graph above show the
deviates of the actual Y values from the predicted Y values. As you can see, most of the
points are closer to the regression line than they are to the overall mean. Squaring these
deviates and taking the sum gives us the regression sum of squares, which for these
numbers is 10.8.

predicted       deviate        squared
X     Y     Y-value     from predicted    deviate

---   ---   ---------    --------------    -------
1     2       3.57          1.57            2.46
3     9       6.66          2.34            5.48
5     9       9.74          0.74            0.55
6    11      11.29          0.29            0.08
7    14      12.83          1.17            1.37
9    15      15.91          0.91            0.83

The regression sum of squares is 10.8, which is 90% smaller than the total sum of
squares (108). This difference between the two sums of squares, expressed as a fraction of
the total sum of squares, is the r2. In this case we would say that r2=0.90; the X-variable
"explains" 90% of the variation in the Y-variable.

The r2 value is formally known as the "coefficient of determination," although it is
usually just called r2. The square root of r2, with a negative sign if the slope is negative, is
the Pearson product-moment correlation coefficient, or just "correlation coefficient." Either
r or r2 can be used to describe the strength of the association between two variables, but I
recommend r2, because it has a more understandable meaning (the proportional difference
between total sum of squares and regression sum of squares) and doesn't have those
annoying negative values.
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Test statistic
The test statistic for a linear regression is ts=d.f.×r2/(1−r2). It gets larger as the degrees

of freedom (n−2) get larger or the r2 gets larger. Under the null hypothesis, ts is t-
distributed with n−2 degrees of freedom. When reporting the results of a linear regression,
it is conventional to report just the r2 and degrees of freedom, not the ts value. Anyone who
really needs the ts value can calculate it from the r2 and degrees of freedom.

It is also possible to square ts and get an F-statistic with 1 degree of freedom in the
numerator and n−2 degrees of freedom in the denominator. The resulting P-value is
mathematically identical to that calculated with ts.

Assumptions
No "error" in X variable. One assumption of linear regression is that the X variable is

set by the experimenter and there is no error, either measurement error or biological
variation. If you're only using the regression line to illustrate the relationship between two
variables (basically, it's decoration on your graph), violation of this assumption doesn't
matter much. If you're trying to accurately predict Y from X or predict X from Y and the X
variable has a lot of measurement error or biological variation, you may want to look into
different techniques for "model II regression," such as "major axis regression" or "reduced
major axis regression," which are not covered here.

Normality and homoscedasticity. Two more assumptions, similar to those for anova,
are that for any value of X, the Y values will be normally distributed and they will be
homoscedastic. Although you will rarely have enough data to test these assumptions, they
are often violated, especially homoscedasticity. If there is a significant regression, X values
with higher mean Y values will often have higher variances of Y as well. A data
transformation of the Y variable may fix this problem, but if that doesn't work, you can use
the non-parametric Spearman rank correlation instead.

Linearity. Linear regression assumes that the data fit to a straight line. If this isn't the
case, a data transformation may help, or it may be necessary to use polynomial regression.

Independence. Linear regression assumes that the data points are independent of each
other, meaning that the value of one data point does not depend on what the value of any
other data point is. The most common violation of this assumption is in time series data,
where some Y variable has been measured at different times. For example, let's say you've
counted the number of elephants in a park in Africa every year. The population either goes
up by 10% or goes down by 10% each year, and the direction of change is completely
random. The number of elephants in one year is not independent of the number of
elephants in the previous year, it is highly dependent on it; if the number of elephants in
one year is high, the number in the next year will still be pretty high, even if it goes down
by 10%. The direction of change from year to the next is completely random, so you
wouldn't expect a significant regression, but this kind of non-independence can give you a
"significant" regression much more often than 5% of the time, even when the null
hypothesis of no relationship between X and Y is true.

Handbook of Biological Statistics

196

http://udel.edu/~mcdonald/statnormal.html
http://udel.edu/~mcdonald/stathomog.html
http://udel.edu/~mcdonald/stattransform.html
http://udel.edu/~mcdonald/stattransform.html
http://udel.edu/~mcdonald/statspearman.html
http://udel.edu/~mcdonald/statcurvreg.html


There are special statistical tests for time-series data and other non-independent data
(such as data showing spatial autocorrelation). I will not cover them here.

Examples
A common observation in ecology is that species diversity decreases as you get further

from the equator. To see whether this pattern could be seen on a small scale, I used data
from the Audobon Society's Christmas Bird Count (http://www.audubon.org/bird/cbc/
index.html) , in which birders try to count all the birds in a 15-mile diameter area during
one winter day. I looked at the total number of species seen in each area on the Delmarva
Peninsula during the 2005 count. Latitude and number of bird species are the two
measurement variables; location is the hidden nominal variable.

Location                 Latitude    Number of species
Bombay Hook, DE           39.217      128
Cape Henlopen, DE         38.800      137
Middletown, DE            39.467      108
Milford, DE               38.958      118
Rehoboth, DE              38.600      135
Seaford-Nanticoke, DE     38.583       94
Wilmington, DE            39.733      113
Crisfield, MD             38.033      118
Denton, MD                38.900       96
Elkton, MD                39.533       98
Lower Kent County, MD     39.133      121
Ocean City, MD            38.317      152
Salisbury, MD             38.333      108
S. Dorchester County, MD  38.367      118
Cape Charles, VA          37.200      157
Chincoteague, VA          37.967      125
Wachapreague, VA          37.667      114
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Latitude and bird species on the
Delmarva Peninsula.

Relationship of body temperature and
inter-call interval in the gray tree frog.

The result is r2=0.214, with 15 d.f., so the P-value
is 0.061. The trend is in the expected direction, but it
is not quite significant. The equation of the regression
line is number of species=−12.039(latitude)+585.14.
Even if it were significant, I don't know what you'd do
with the equation; I suppose you could extrapolate
and use it to predict that above the 49th parallel, there
would be fewer than zero bird species.

Gayou (1984) measured the intervals between male
mating calls in the gray tree frog, Hyla versicolor, at
different temperatures. The regression line is
interval=−0.205(temperature)+8.36, and it is highly
significant (r2=0.29, 45 d.f., p=9×10−5). You could
rearrange the equation, temperature=(interval−8.36)/
(−0.205), measure the interval between frog mating
calls, and estimate the air temperature. Or you could
buy a thermometer.

Goheen et al. (2003) captured 14 female northern grasshopper mice (Onchomys
leucogaster) in north-central Kansas, measured the body length, and counted the number of
offspring. There are two measurement variables, body length and number of offspring, and
the authors were interested in whether larger body size causes an increase in the number of
offspring, so they did a linear regression. The results are significant: r2=0.46, 12 d.f.,
P=0.008. The equation of the regression line is offspring=−7.88+0.108(length).

Graphing the results
In a spreadsheet, you show the results of a regression on a scatter graph, with the

independent variable on the X axis. To add the regression line to the graph, finish making
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the graph, then select the graph and go to the Chart menu. Choose "Add Trendline" and
choose the straight line. If you want to show the regression line extending beyond the
observed range of X-values, choose "Options" and adjust the "Forecast" numbers until you
get the line you want.

If you have transformed your data for the regression, don't plot the untransformed data;
instead, plot the transformed data. See the Excel or Calc graph instructions for details on
how to do this.

Similar tests
Sometimes it is not clear whether an experiment includes one measurement variable

and two nominal variables, and should be analyzed with a two-way anova or paired t-test,
or includes two measurement variables and one nominal variable, and should be analyzed
with correlation and regression. In that case, your choice of test is determined by the
biological question you're interested in. For example, let's say you've measured the range of
motion of the right shoulder and left shoulder of a bunch of right-handed people. If your
question is "Is there an association between the range of motion of people's right and left
shoulders--do people with more flexible right shoulders also tend to have more flexible left
shoulders?", you'd treat "right shoulder range-of-motion" and "left shoulder range-of-
motion" as two different measurement variables, and individual as one nominal variable,
and analyze with correlation and regression. If your question is "Is the right shoulder more
flexible than the left shoulder?", you'd treat "range of motion" as one measurement
variable, "right vs. left" as one nominal variable, individual as one nominal variable, and
you'd analyze with two-way anova or a paired t-test.

If the dependent variable is a percentage, such as percentage of people who have heart
attacks on different doses of a drug, it's really a nominal variable, not a measurement. Each
individual observation is a value of the nominal variable ("heart attack" or "no heart
attack"); the percentage is not really a single observation, it's a way of summarizing a
bunch of observations. One approach for percentage data is to arcsine transform the
percentages and analyze with correlation and linear regression. You'll see this in the
literature, and it's not horrible, but it's better to analyze using logistic regression.

If the relationship between the two measurement variables is best described by a curved
line, not a straight one, one possibility is to try different transformations on one or both of
the variables. The other option is to use polynomial regression (also known as curvilinear
regression).

Linear regression assumes that the Y variables for any value of X would be normally
distributed and homoscedastic; if these assumptions are violated, Spearman rank
correlation, the non-parametric analog of linear regression, may be used.

To compare two or more regression lines to each other, use ancova. If there are more
than two measurement variables, use multiple regression.
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How to do the test
Spreadsheet

I have put together a spreadsheet (http://udel.edu/~mcdonald/statregression.xls) to do
linear regression on up to 1000 pairs of observations. It provides the following:

• The regression coefficient (the slope of the regression line).
• The Y-intercept. With the slope and the intercept, you have the equation for the

regression line: Y=a+bX, where a is the Y intercept and b is the slope.
• The r2 value.
• The degrees of freedom. There are n−2 degrees of freedom in a regression, where n

is the number of observations.
• The P-value. This gives you the probability of finding a slope that is as large or

larger than the observed slope, under the null hypothesis that the true slope is 0.
• A Y-estimator and an X-estimator. This enables you to enter a value of X and find

the corresponding value of Y on the best-fit line, or vice-versa. This would be
useful for constructing standard curves, such as used in protein assays for example.

Web pages
Web pages that will perform linear regression are here, (http://faculty.vassar.edu/lowry/

corr_stats.html) here, (http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/
Regression.htm) and here. (http://www.physics.csbsju.edu/stats/QF_NROW_form.html)
They all require you to enter each number individually, and thus are inconvenient for large
data sets. This web page (http://www.fon.hum.uva.nl/Service/Statistics/
Correlation_coefficient.html) does linear regression and lets you paste in a set of numbers,
which is more convenient for large data sets.

SAS
You can use either PROC GLM or PROC REG for a simple linear regression; since

PROC REG is also used for multiple regression, you might as well learn to use it. Here's an
example using the bird data from above.

data birds;
input town $ state $ latitude species;
cards;

Bombay_Hook          DE     39.217     128
Cape_Henlopen        DE     38.800     137
Middletown           DE     39.467     108
Milford              DE     38.958     118
Rehoboth             DE     38.600     135
Seaford-Nanticoke    DE     38.583      94
Wilmington           DE     39.733     113
Crisfield            MD     38.033     118
Denton               MD     38.900      96
Elkton               MD     39.533      98
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Lower_Kent_County    MD     39.133     121
Ocean_City           MD     38.317     152
Salisbury            MD     38.333     108
S_Dorchester_County  MD     38.367     118
Cape_Charles         VA     37.200     157
Chincoteague         VA     37.967     125
Wachapreague         VA     37.667     114
;
proc reg data=birds;

model species=latitude;
run;

The output includes an analysis of variance table. Don't be alarmed by this; if you dig down
into the math, regression is just another variety of anova. Below the anova table are the r2,
slope, intercept, and P-value:

Root MSE             16.37357    R-Square     0.2143 r2
Dependent Mean      120.00000    Adj R-Sq     0.1619
Coeff Var            13.64464

Parameter Estimates

Parameter   Standard
Variable   DF   Estimate      Error  t Value  Pr > |t|

intercept
Intercept   1  585.14462  230.02416     2.54    0.0225
latitude    1  -12.03922    5.95277    -2.02    0.0613 P-value

slope

These results indicate an r2 of 0.21, intercept of 585.1, a slope of −12.04, and a P-value of
0.061.

Further reading
Sokal and Rohlf, pp. 451-471, 486-493.

Zar, pp. 324-358, 377-386.

References
Gayou, D.C. 1984. Effects of temperature on the mating call of Hyla versicolor. Copeia

1984: 733-738.

Goheen, J.R., G.A. Kaufman, and D.W. Kaufman. 2003. Effect of body size on
reproductive characteristics of the northern grasshopper mouse in north-central Kansas.
Southwest. Naturalist 48: 427-431.
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Spearman rank correlation

When to use it
Spearman rank correlation is used when you have two measurement variables and one

"hidden" nominal variable. The nominal variable groups the measurements into pairs; if
you've measured height and weight of a bunch of people, "individual name" is a nominal
variable. You want to see whether the two measurement variables covary; whether, as one
variable increases, the other variable tends to increase or decrease. It is the non-parametric
alternative to correlation, and it is used when the data do not meet the assumptions about
normality, homoscedasticity and linearity. Spearman rank correlation is also used when one
or both of the variables consists of ranks.

You will rarely have enough data in your own data set to test the normality and
homoscedasticity assumptions of regression and correlation; your decision about whether
to do linear regression and correlation or Spearman rank correlation will usually depend on
your prior knowledge of whether the variables are likely to meet the assumptions.

Null hypothesis
The null hypothesis is that the ranks of one variable do not covary with the ranks of the

other variable; in other words, as the ranks of one variable increase, the ranks of the other
variable are not more likely to increase (or decrease).

How the test works
Spearman rank correlation works by converting each variable to ranks. Thus, if you

you're doing a Spearman rank correlation of blood pressure vs. body weight, the lightest
person would get a rank of 1, second-lightest a rank of 2, etc. The lowest blood pressure
would get a rank of 1, second lowest a rank of 2, etc. If one or both variables is already
ranks, they remain unchanged, of course. When two or more observations are equal, the
average rank is used. For example, if two observations are tied for the second-highest rank,
they would get a rank of 2.5 (the average of 2 and 3).

Once the two variables are converted to ranks, a correlation analysis is done on the
ranks. The coefficient of determination (r2) is calculated for the two columns of ranks, and
the significance of this is tested in the same way as the r2 for a regular correlation. The P-
value from the correlation of ranks is the P-value of the Spearman rank correlation. The
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ranks are rarely graphed against each other, and a line is rarely used for either predictive or
illustrative purposes, so you don't calculate a non-parametric equivalent of the regression
line.

Example
Males of the magnificent frigatebird (Fregata magnificens) have a large red throat

pouch. They visually display this pouch and use it to make a drumming sound when
seeking mates. Madsen et al. (2004) wanted to know whether females, who presumably
choose mates based on their pouch size, could use the pitch of the drumming sound as an
indicator of pouch size. The authors estimated the volume of the pouch and the
fundamental frequency of the drumming sound in 18 males:

Volume, cm^3  Frequency, Hz
1760            529

====See the web page for the full data set====
7960            416

There are two measurement variables, pouch size and pitch; the identity of each male is
the hidden nominal variable. The authors analyzed the data using Spearman rank
correlation, which converts the measurement variables to ranks, and the relationship
between the variables is significant (r2=0.58, 16 d.f., P=0.0002). The authors do not explain
why they used Spearman rank correlation; if they had used regular correlation, they would
have obtained r2=0.67, P=0.00003.

Graphing the results
If you have measurement data for both of the X and Y variables, you could plot the

results the same way you would for a linear regression. Don't put a regression line on the
graph, however; you can't plot a rank correlation line on a graph with measurement
variables on the axes, and it would be misleading to put a linear regression line on a graph
when you've analyzed it with rank correlation.

If you actually have true ranked data for both variables, you could plot a line through
them, I suppose. I'm not sure what the point would be, however.

How to do the test
Spreadsheet

I've put together a spreadsheet that will perform a Spearman rank correlation
(http://udel.edu/~mcdonald/statspearman.xls) on up to 1000 observations. With small
numbers of observations (10 or fewer), the P-value based on the r2 is inaccurate, so the P-
value is looked up in a table of critical values.

Spearman rank correlation

203

http://udel.edu/~mcdonald/statregression.html
http://udel.edu/~mcdonald/statspearman.xls
http://udel.edu/~mcdonald/statspearman.xls


Web page
This web page (http://faculty.vassar.edu/lowry/corr_rank.html) will do Spearman rank

correlation.

SAS
Use PROC CORR with the SPEARMAN option to do Spearman rank correlation. Here

is an example using the bird data from the correlation and regression web page:

proc corr data=birds spearman;
var species latitude;
run;

The results include the Spearman correlation coefficient, analagous to the r-value of a
regular correlation, and the P-value:

Spearman Correlation Coefficients, N = 17
Prob > |r| under H0: Rho=0

species   latitude

species   1.00000   -0.36263 Spearman correlation coefficient
0.1526 P-value

latitude -0.36263    1.00000
0.1526

Further reading
Sokal and Rohlf, pp. 598, 600.

Zar, pp. 395-398.

Reference
Madsen, V., T.J.S. Balsby, T. Dabelsteen, and J.L. Osorno. 2004. Bimodal signaling of a

sexually selected trait: gular pouch drumming in the magnificent frigatebird. Condor
106: 156-160.
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Polynomial regression

When to use it
Sometimes, when you analyze data with correlation and linear regression, you notice

that the relationship between the independent (X) variable and dependent (Y) variable
looks like it follows a curved line, not a straight line. In that case, the linear regression line
will not be very good for describing and predicting the relationship, and the P-value may
not be an accurate test of the hypothesis that the variables are not associated.

Your first choice when faced with a curved relationship between two measurement
variables should be to try data transformations on one or both of the variables. Often, this
will straighten out a simple J-shaped curve. If that doesn't work, you can try curvilinear
regression, in which a more complicated equation than the linear regression equation is fit
to the data. Equations with a variety of terms will produce curved lines, including
exponential (involving bX, where b is a constant), power (involving Xb), logarithmic
(involving log(X)), and trigonometric (involving sine, cosine, or or other trigonometric
functions). For any particular form of equation involving such terms, it is possible to find
the equation for the curved line that best fits the data points, and to compare the fit of the
more complicated equation to that of a simpler equation (such as the equation for a straight
line).

Here I will use polynomial regression as one example of curvilinear regression. A
polynomial equation has X raised to integer powers such as X2 and X3. A quadratic
equation has the form Y=a+b1X+b2X2, where a is the Y-intercept and b1 and b2 are
constants. It produces a parabola. A cubic equation has the form Y=a+b1X+b2X2+b3X3

and produces an S-shaped curve, while a quartic equation has the form
Y=a+b1X+b2X2+b3X3+b4X4 and can produce M or W shaped curves. You can fit higher-
order polynomial equations, but it is very unlikely that you would want to use anything
more than the cubic in biology.

Null hypotheses
Several null hypotheses are tested while doing polynomial regression. The first null

hypothesis is that a quadratic equation does not fit the data significantly better than a linear
equation; the next null hypothesis may be that a cubic equation does not fit the data
significantly better than a quadratic equation, and so on. There is also a null hypothesis for
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each equation that says that it does not fit the data significantly better than a horizontal line;
in other words, that there is no relationship between the X and Y variables.

How the test works
In polynomial regression, different powers of the X variable (X, X2, X3…) are added to

an equation to see whether they increase the r2 significantly. First a linear regression is
done, fitting an equation of the form Y=a+bX to the data. Then an equation of the form
Y=a+b1X+b2X2, which produces a parabola, is fit to the data. The r2 will always increase
when you add a higher-order term, but the question is whether the increase in r2 is
significantly greater than expected due to chance. Next, an equation of the form
Y=a+b1X+b2X2+b3X3, which produces an S-shaped line, is fit and the increase in r2 is
tested. This can continue until adding another term does not increase r2 significantly,
although in most cases it is hard to imagine a biological meaning for exponents greater than
3. Once the best-fitting equation is chosen, it is tested to see whether it fits the data
significantly better than an equation of the form Y=a; in other words, a horizontal line.

Examples
Fernandez-Juricic et al. (2003) examined the effect of human disturbance on the nesting

of house sparrows (Passer domesticus). They counted breeding sparrows per hectare in 18
parks in Madrid, Spain, and also counted the number of people per minute walking through
each park (both measurement variables); the identity of the park is the hidden nominal
variable.

Graph of sparrow abundance vs. human disturbance with linear, quadratic, and cubic
regression lines.

The linear regression is not significant (r2=0.174, 16 d.f., P=0.08). The quadratic
regression is significant (r2=0.372, 15 d.f., P=0.03), and it is significantly better than the
linear regression (P=0.03).The cubic graph is significant (r2=0.765, 14 d.f., P=0.0001), and
the increase in r2 between the cubic and the quadratic equation is highly significant
(P=1×10−5). The cubic equation is
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Graph of clutch size (number of eggs)
vs. carapace length, with best-fit

quadratic line.

Y=0.0443x3−2.916x2+50.601x−87.765.

The quartic equation does not fit significantly better than the cubic equation (P=0.80).

Ashton et al. (2007) measured the carapace
length (in mm) of 18 female gopher tortoises
(Gopherus polyphemus) in Okeeheelee County
Park, Florida, and X-rayed them to count the
number of eggs in each. The data are shown below
in the SAS example. The linear regression is not
significant (r2=0.015, 16 d.f., P=0.63), but the
quadratic is significant (r2=0.43, 15 d.f., P=0.014).
The increase in r2 from linear to quadratic is
significant (P= 0.001). The best-fit quadratic
equation is Y=−899.9+5.857X−0.009425X2.
Adding the cubic and quartic terms does not
significantly increase the r2.

Graphing the results
As shown above, you graph a polynomial regression the same way you would a linear

regression, a scattergraph with the independent variable on the X-axis and the dependent
variable on the Y-axis. In general, you shouldn't shown the regression line for values
outside the range of observed X values, as extrapolation with polynomial regression is even
more likely than linear regression to yield ridiculous results. For example, extrapolating the
quadratic equation relating tortoise carapace length and number of eggs predicts that
tortoises with carapace length less than 279 mm or greater than 343 mm would have
negative numbers of eggs.

Similar tests
Before performing a polynomial regression, you should try different transformations

when faced with an obviously curved relationship between an X and a Y variable. A linear
equation relating transformed variables is simpler and more elegant than a curvilinear
equation relating untransformed variables. You should also remind yourself of your reason
for doing a regression. If your purpose is prediction of unknown values of Y corresponding
to know values of X, then you need an equation that fits the data points well, and a
polynomial regression may be appropriate if transformations do not work. However, if your
purpose is testing the null hypothesis that there is no relationship between X and Y, and a
linear regression gives a significant result, you may want to stick with the linear regression
even if polynomial gives a significantly better fit. Using a less-familiar technique that
yields a more-complicated equation may cause your readers to be a bit suspicious of your
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results; they may feel you went fishing around for a statistical test that supported your
hypothesis, especially if there's no obvious biological reason for an equation with terms
containing exponents.

Spearman rank correlation is a nonparametric test of the association between two
variables. It will work well if there is a steady increase or decrease in Y as X increases, but
not if Y goes up and then goes down.

Polynomial regression is a form of multiple regression. In multiple regression, there is
one dependent (Y) variable and multiple independent (X) variables, and the X variables
(X1, X2, X3...) are added to the equation to see whether they increase the R2 significantly.
In polynomial regression, the independent "variables" are just X, X2, X3, etc.

How to do the test
Spreadsheet

I have prepared a spreadsheet (http://udel.edu/~mcdonald/statpolyreg.xls) that will help
you perform a polynomial regression. It tests equations up to fourth order, and it will
handle up to 1000 observations.

Web pages
There is a very powerful web page (http://StatPages.org/nonlin.html) that will fit just

about any equation you can think of to your data (not just polynomial). Another web page
that will fit any of 15 commonly used equations is here; (http://www.colby.edu/chemistry/
PChem/scripts/lsfitpl.html") it is easier to use, and even draws a graph. This web page
(http://www3.sympatico.ca/mcomeau/webpublic/javapage/reg/reg.htm) only does
polynomial regression, but is very fast and easy to use.

SAS
To do polynomial regression in SAS, you create a data set containing the square of the

independent variable, the cube, etc. You then use PROC REG for models containing the
higher-order variables. It's possible to do this as a multiple regression, but I think it's less
confusing to use multiple model statements, adding one term to each model. There doesn't
seem to be an easy way to test the significance of the increase in r2 in SAS, so you'll have
to do that by hand. If r2

i is the r2 for the ith order, and r2
j is the r2 for the next higher order,

and d.f.j is the degrees of freedom for the higher-order equation, the F-statistic is
d.f.j×(r2

j−r2
i)/(1−r2

j). It has j degrees of freedom in the numerator and d.f.j=n−j−1 degrees
of freedom in the denominator.

Here's an example, using the data on tortoise carapace length and clutch size from
Ashton et al. (2007).

data turtles;
input length clutch;
cards;

284     3
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290     2
290     7
290     7
298     11
299     12
302     10
306     8
306     8
309     9
310     10
311     13
317     7
317     9
320     6
323     13
334     2
334     8
;
data turtlepower; set turtles;

length2=length*length;
length3=length*length*length;
length4=length*length*length*length;

proc reg data=turtlepower;
model clutch=length;
model clutch=length length2;
model clutch=length length2 length3;
run;

In the output, first look for the r2 values under each model:

The REG Procedure
Model: MODEL1

Dependent Variable: clutch
.
.
.

Root MSE              3.41094    R-Square    0.0148 linear r-sq
Dependent Mean        8.05556    Adj R-Sq   -0.0468
Coeff Var            42.34268

.

.

.
The REG Procedure

Model: MODEL2
Dependent Variable: clutch

.

.

.
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Root MSE              2.67050    R-Square    0.4338 quadratic r-sq
Dependent Mean        8.05556    Adj R-Sq    0.3583
Coeff Var            33.15104

For this example, n=18. The F-statistic for the increase in r2 from linear to quadratic is
15×(0.4338−0.0148)/(1−0.4338)=11.10 with d.f.=2, 15. Using a spreadsheet (enter
=FDIST(11.10, 2, 15)) or an online F-statistic calculator, (http://www.danielsoper.com/
statcalc/calc07.as ) this gives a P-value of 0.0011.

Once you've figured out which equation is best (the quadratic, for our example, since
the cubic and quartic equations do not significantly increase the r2), look for the parameters
in the output:

Parameter Estimates

Parameter     Standard
Variable     DF      Estimate        Error   t Value   Pr > |t|

Intercept     1    -899.93459    270.29576     -3.33     0.0046
length        1       5.85716      1.75010      3.35     0.0044
length2       1      -0.00942      0.00283     -3.33     0.0045

This tells you that the equation for the best-fit quadratic curve is
Y=−899.9+5.857X−0.00942X2.

Further reading
Sokal and Rohlf, pp. 665-670.

Zar, pp. 452-459.
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Analysis of covariance

When to use it
Analysis of covariance (ancova) is used when you have two measurement variables and

two nominal variables. One of the nominal variables groups is the "hidden" nominal
variable that groups the measurement observations into pairs, and the other nominal
variable divides the regressions into two or more sets.

The purpose of ancova to compare two or more linear regression lines. It is a way of
comparing the Y variable among groups while statistically controlling for variation in Y
caused by variation in the X variable. For example, let's say you want to know whether the
Cope's gray treefrog, Hyla chrysoscelis, has a different calling rate than the eastern gray
treefrog, Hyla versicolor, which has twice as many chromosomes as H. chrysoscelis but is
morphologically identical. As shown on the regression web page, the calling rate of eastern
gray treefrogs is correlated with temperature, so you need to control for that. One way to
control for temperature would be to bring the two species of frogs into a lab and keep them
all at the same temperature, but you'd have to worry about whether their behavior in an
artificial lab environment was really the same as in nature. Instead, it would be better to
measure the calling rate of each species of frog at a variety of temperatures, then use
ancova to see whether the regression line of calling rate on temperature is significantly
different between the two species.

Null hypotheses
Two null hypotheses are tested in an ancova. The first is that the slopes of the

regression lines are all the same. If this hypothesis is not rejected, the second null
hypothesis is tested: that the Y-intercepts of the regression lines are all the same.

Although the most common use of ancova is for comparing two regression lines, it is
possible to compare three or more regressions. If their slopes are all the same, it is then
possible to do planned or unplanned comparisions of Y-intercepts, similar to the planned or
unplanned comparisons of means in an anova. I won't cover that here.

How it works
The first step in performing an ancova is to compute each regression line. In the frog

example, there are two values of the species nominal variable, Hyla chrysoscelis and H.
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Eggs laid vs. female weight in the firefly Photinus ignitus..
Filled circles are females that have mated with three males;

open circles are females that have mated with one male.

versicolor, so the regression line is calculated for calling rate vs. temperature for each
species of frog.

Next, the slopes of the regression lines are compared; the null hypothesis that the slopes
are the same is tested. The final step of the anova, comparing the Y-intercepts, cannot be
performed if the slopes are significantly different from each other. If the slopes of the
regression lines are different, the lines cross each other somewhere, and one group has
higher Y values in one part of the graph and lower Y values in another part of the graph. (If
the slopes are different, there are techniques for testing the null hypothesis that the
regression lines have the same Y-value for a particular X-value, but they're not used very
often and I won't consider them here.)

If the slopes are significantly different, the ancova is done, and all you can say is that
the slopes are significantly different. If the slopes are not significantly different, the next
step in an ancova is to draw a regression line through each group of points, all with the
same slope. This common slope is a weighted average of the slopes of the different groups.

The final test in the ancova is to test the null hypothesis that all of the Y-intercepts of
the regression lines with a common slope are the same. Because the lines are parallel,
saying that they are significantly different at one point (the Y-intercept) means that the
lines are different at any point.

Examples
In the firefly species Photinus

ignitus, the male transfers a large
spermatophore to the female
during mating. Rooney and Lewis
(2002) wanted to know whether
the extra resources from this
"nuptial gift" enable the female to
produce more offspring. They
collected 40 virgin females and
mated 20 of them to one male and
20 to three males. They then
counted the number of eggs each
female laid. Because fecundity
varies with the size of the female,
they analyzed the data using
ancova, with female weight
(before mating) as the
independent measurement
variable and number of eggs laid
as the dependent measurement variable. Because the number of males has only two values
("one" or "three"), it is a nominal variable, not measurement.
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Pelvic canal width vs. snout-vent length
in the American alligator. Circles and

solid line are males; X's and dashed line
are females.

The slopes of the two regression lines (one for single-mated females and one for triple-
mated females) are not significantly different (F1, 36=1.1, P=0.30). The Y-intercepts are
significantly different (F1, 36=8.8, P=0.005); females that have mated three times have
significantly more offspring than females mated once.

Paleontologists would like to be able to determine the sex of dinosaurs from their
fossilized bones. To see whether this is feasible, Prieto-Marquez et al. (2007) measured
several characters that are thought to distinguish the sexes in alligators (Alligator
mississipiensis), which are among the closest living relatives of dinosaurs. One of the
characters was pelvic canal width, which they wanted to standardize using snout-vent
length. The raw data are shown in the SAS example below.

The slopes of the regression lines are not significantly different (P=0.9101). The Y-
intercepts are significantly different (P=0.0267), indicating that male alligators of a given
length have a significantly greater pelvic canal width. However, inspection of the graph
shows that there is a lot of overlap between the sexes even after standardizing for sex, so it
would not be possible to reliably determine the sex of a single individual with this character
alone.

Graphing the results
Data for an ancova are shown on a

scattergraph, with the independent variable on the
X-axis and the dependent variable on the Y-axis.
A different symbol is used for each value of the
nominal variable, as in the firefly graph above,
where filled circles are used for the thrice-mated
females and open circles are used for the once-
mated females. To get this kind of graph in a
spreadsheet, you would put all of the X-values in
column A, one set of Y-values in column B, the
next set of Y-values in column C, and so on.

Most people plot the individual regression
lines for each set of points, as shown in the firefly
graph, even if the slopes are not significantly
different. This lets people see how similar or
different the slopes look. This is easy to do in a
spreadsheet; just click on one of the symbols and choose "Add Trendline" from the Chart
menu.

Similar tests
One alternative technique that is sometimes possible is to take the ratio of the two

measurement variables, then use a one-way anova. For the mussel example I used for
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testing the homogeneity of means in one-way anova, I standardized the length of the
anterior adductor muscle by dividing by the total length. There are technical problems with
doing statistics on ratios of two measurement variables (the ratio of two normally
distributed variables is not normally distributed), but if you can safely assume that the
regression lines all pass through the origin (in this case, that a mussel that was 0 mm long
would have an AAM length of 0 mm), this is not an unreasonable thing to do, and it
simplifies the statistics. It would be important to graph the association between the
variables and analyze it with linear regression to make sure that the relationship is linear
and does pass through the origin.

Sometimes the two measurement variables are just the same variable measured at
different times or places. For example, if you measured the weights of two groups of
individuals, put some on a new weight-loss diet and the others on a control diet, then
weighed them again a year later, you could treat the difference between final and initial
weights as a single variable, and compare the mean weight loss for the control group to the
mean weight loss of the diet group using a one-way anova. The alternative would be to
treat final and initial weights as two different variables and analyze using an ancova: you
would compare the regression line of final weight vs. initial weight for the control group to
the regression line for the diet group. The anova would be simpler, and probably perfectly
adequate; the ancova might be better, particularly if you had a wide range of initial weights,
because it would allow you to see whether the change in weight depended on the initial
weight.

One nonparametric alternative to ancova is to convert the measurement variables to
ranks, then do a regular ancova on the ranks; see Conover and Iman (1982) for the details.
There are several other versions of nonparametric ancova, but they appear to be less
popular, and I don't know the advantages and disadvantages of each.

How to do the test
Spreadsheet and web pages

Richard Lowry has made web pages (http://faculty.vassar.edu/lowry/vsancova.html)
that allow you to perform ancova with two, three or four groups, and a downloadable
spreadsheet for ancova with more than four groups. You may cut and paste data from a
spreadsheet to the web pages. One bug in the web pages is that very small values of P are
not represented correctly. If the web page gives you a P value greater than 1, use the FDIST
function of Excel along with the F value and degrees of freedom from the web page to
calculate the correct P value.

SAS
Here's an illustration of how to do analysis of covariance in SAS, using the data from

Prieto-Marquez et al. (2007) on snout-vent length and pelvic canal width in alligators:
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data gators;
input sex $ snoutvent pelvicwidth;
cards;

male      1.10    7.62
====See the web page for the full data set====
female    1.23    9.23
;
proc glm data=gators;

class sex;
model pelvicwidth=snoutvent sex snoutvent*sex;

proc glm data=gators;
class sex;
model pelvicwidth=snoutvent sex;
run;

The first time you run PROC GLM, the MODEL statement includes the interaction term
(SNOUTVENT*SEX). This tests whether the slopes of the regression lines are
significantly different:

Type III   Mean
Source         DF     SS     Square  F Value   Pr > F

snoutvent       1   33.949   33.949    88.05   <.0001
sex             1    0.079    0.079     0.21   0.6537
snoutvent*sex   1    0.005    0.005     0.01   0.9101 slope P-value

If the P-value of the slopes is significant, you'd be done. In this case it isn't, so you look at
the output from the second run of PROC GLM. This time, the MODEL statement doesn't
include the interaction term, so the model assumes that the slopes of the regression lines are
equal. This P-value tells you whether the Y-intercepts are significantly different:

Type III   Mean
Source         DF     SS     Square  F Value   Pr > F

snoutvent       1   41.388   41.388   110.76   <.0001
sex             1    2.016    2.016     5.39   0.0267 intercept P-value

Further reading
Sokal and Rohlf, pp. 499-521.
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Multiple regression

When to use it
You use multiple regression when you have three or more measurement variables. One

of the measurement variables is the dependent (Y) variable. The rest of the variables are the
independent (X) variables. The purpose of a multiple regression is to find an equation that
best predicts the Y variable as a linear function of the X variables. There is also a"hidden"
nominal variable that groups the measurement variables together.

Multiple regression for prediction
One use of multiple regression is prediction or estimation of an unknown Y value

corresponding to a set of X values. For example, let's say you're interested in finding
suitable habitat to reintroduce the rare beach tiger beetle, Cicindela dorsalis dorsalis,
which lives on sandy beaches on the Atlantic coast of North America. You've gone to a
number of beaches and measured the density of tiger beetles (the dependent variable) and
several biotic and abiotic factors, such as wave exposure, sand particle size, beach
steepness, density of amphipods and other prey organisms, etc. Multiple regression would
give you an equation that would relate the tiger beetle density to a function of all the other
variables. Then if you went to a new beach and measured all the independent variables
(wave exposure, sand particle size, etc.) you could use the multiple regression equation to
predict the density of tiger beetles that could live there.

Multiple regression for understanding causes
A second use of multiple regression is to try to understand the functional relationships

between the dependent and independent variables, to try to see what might be causing the
variation in the dependent variable. For example, if you did a regression of tiger beetle
density on sand particle size by itself, you would probably see a significant relationship. If
you did a regression of tiger beetle density on wave exposure by itself, you would probably
see a significant relationship. However, sand particle size and wave exposure are
correlated; beaches with bigger waves tend to have bigger sand particles. Maybe sand
particle size is really important, and the correlation between it and wave exposure is the
only reason for a significant regression between wave exposure and beetle density.
Multiple regression is a statistical way to try to control for this; it can answer questions like
"If sand particle size (and every other measured variable) were the same, would the
regression of beetle density on wave exposure be significant?"
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Null hypothesis
The main null hypothesis of a multiple regression is that there is no relationship

between the X variables and the Y variables, that the fit of the observed Y values to those
predicted by the multiple regression equation is no better than what you would expect by
chance. As you are doing a multiple regression, there is also a null hypothesis for each X
variable, that adding that X variable to the multiple regression does not improve the fit of
the multiple regression equation any more than expected by chance.

How it works
The basic idea is that an equation is found, like this:

Yexp=a+b1X1+b2X2+b3X3...

The Yexp is the expected value of Y for a given set of X values. b1 is the estimated slope of
a regression of Y on X1, if all of the other X variables could be kept constant, and so on for
b2, b3, etc; a is the intercept. Values of b1, etc. (the "partial regression coefficients") and
the intercept are found that minimize the squared deviations between the expected and
observed values of Y.

How well the equation fits the data is expressed by R2, the "coefficient of multiple
determination." This can range from 0 (for no relationship between the X and Y variables)
to 1 (for a perfect fit, no difference between the observed and expected Y values). The P-
value is a function of the R2, the number of observations, and the number of X variables.

When the purpose of multiple regression is prediction, the important result is an
equation containing partial regression coefficients. If you had the partial regression
coefficients and measured the X variables, you could plug them into the equation and
predict the corresponding value of Y. The magnitude of the partial regression coefficient
depends on the unit used for each variable, so it does not tell you anything about the
relative importance of each variable.

When the purpose of multiple regression is understanding functional relationships, the
important result is an equation containing standard partial regression coefficients, like this:

y'exp=a+b'1x'1+b'2x'2+b'3x'3...

where b'1 is the standard partial regression coefficient of y on X1. It is the number of
standard deviations that Y would change for every one standard deviation change in X1, if
all the other X variables could be kept constant. The magnitude of the standard partial
regression coefficients tells you something about the relative importance of different
variables; X variables with bigger standard partial regression coefficients have a stronger
relationship with the Y variable.
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Selecting variables in multiple regression
Every time you add a variable to a multiple regression, the R2 increases (unless the

variable is a simple linear function of one of the other variables, in which case R2 will stay
the same). The best-fitting model is therefore the one that includes all of the X variables.
However, whether the purpose of a multiple regression is prediction or understanding
functional relationships, it is often useful to decide which are important and unimportant
variables. In the tiger beetle example, if your purpose was prediction it would be useful to
know that your prediction would be almost as good if you measured only sand particle size
and amphipod density, rather than measuring a dozen difficult variables. If your purpose
was understanding possible causes, knowing that certain variables did not explain much of
the variation in tiger beetle density could suggest that they are probably not important
causes of the variation in beetle density.

One way to choose variables, called forward selection, is to do a linear regression for
each of the X variables, one at a time, then pick the X variable that had the highest R2.
Next you do a multiple regression with the X variable from step 1 and each of the other X
variables. The X variable that increases the R2 by the greatest amount is added, if the P-
value of the increase in R2 is below the desired cutoff. This procedure continues until
adding another X variable does not significantly increase the R2.

To calculate the P-value of an increase in R2 when increasing the number of X
variables from d to e, where the total sample size is n, use the formula:

Fs=(R2e−R2d)/(e−d)
——————————————
(1−R2e)/(n−e−1)

A second technique, called backward elimination, is to start with a multiple regression
using all of the X variables, then perform multiple regressions with each X variable
removed in turn. The X variable whose removal causes the smallest decrease in R2 is
eliminated. This process continues until removal of any X variable would cause a
significant decrease in R2.

Odd things can happen when using either of the above techniques. You could add
variables X1, X2, X3, and X4, with a significant increase in R2 at each step, then find that
once you've added X3 and X4, you can remove X1 with little decrease in R2. It is possible
to do multiple regression with independent variables A, B, C, and D, and have forward
selection choose variables A and B, and backward elimination choose variables C and D.
To avoid this, many people use stepwise multiple regression. After adding each X variable,
the effects of removing any of the other X variables is tested. This continues until adding
new X variables does not significantly increase R2 and removing X variables does not
significantly decrease it.
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Important warning
It is easy to throw a big data set at a multiple regression and get an impressive-looking

output. However, many people are skeptical of the usefulness of multiple regression,
especially for variable selection, and you should view the results with caution. You should
examine the linear regression of the dependent variable on each independent variable, one
at a time, examine the linear regressions between each pair of independent variables, and
consider what you know about the biology. You should probably treat multiple regression
as a way of suggesting patterns in your data, rather than rigorous hypothesis testing.

If independent variables A and B are both correlated with Y, and A and B are highly
correlated with each other, only one may contribute significantly to the model, but it would
be incorrect to blindly conclude that the variable that was dropped from the model has no
biological importance.For example, let's say you did a multiple regression on vertical leap
in children five to 12 years old, with height, weight, age and score on a reading test as
independent variables. All four independent variables are highly correlated in children,
since older children are taller, heavier and read better, so it's possible that once you've
added weight and age to the model, there is so little variation left that the effect of height is
not significant. It would be biologically silly to conclude that height had no influence on
vertical leap. Because reading ability is correlated with age, it's possible that it would
contribute significantly to the model; that might suggest some interesting followup
experiments on children all of the same age, but it would be unwise to conclude that there
was a real effect of reading ability and vertical leap based solely on the multiple regression.

Example
I extracted some data from the Maryland Biological Stream Survey

(http://www.dnr.state.md.us/streams/data/index.html) to practice multiple regression on;
the data are shown below in the SAS example. The dependent variable is the number of
longnose dace (Rhinichthys cataractae) per 75-meter section of stream. The independent
variables are the area (in acres) drained by the stream; the dissolved oxygen (in mg/liter);
the maximum depth (in cm) of the 75-meter segment of stream; nitrate concetration (mg/
liter); sulfate concentration (mg/liter); and the water temperature on the sampling date (in
degrees C).

One biological goal might be to measure the physical and chemical characteristics of a
stream and be able to predict the abundance of longnose dace; another goal might be to
generate hypotheses about the causes of variation in longnose dace abundance.

The results of a stepwise multiple regression, with P-to-enter and P-to-leave both equal
to 0.15, is that acreage, nitrate, and maximum depth contribute to the multiple regression
equation. The R2 of the model including these three terms is 0.28, which isn't very high.

Graphing the results
If the multiple regression equation ends up with only two independent variables, you

might be able to draw a three-dimensional graph of the relationship. Because most humans
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Observed abundance of longnose dace vs.
the abundance predicted from the multiple

regression equation.

have a hard time visualizing four or more dimensions, there's no good visual way to
summarize all the information in a multiple regression with three or more independent
variables. It could be useful to plot a scattergraph with the predicted values on the X-axis
and the observed values on the Y-axis. For the longnose dace, I set up a spreadsheet with
acreage in column C, maximum depth in column E, and nitrate in column F. Then I put the
following equation (in Excel format) in column J, row 2, and copied it into each cell in
column J:

=0.00199*C2+0.3361*E2+8.67304*F2-23.82907

If the multiple regression were perfect, the
points would fall on the diagonal dashed line; I
made the graph square, with the same scale on
the X and Y axis, to emphasize this. The graph
makes it easy to see that the multiple regression
equation doesn't do a very good job of predicting
longnose dace abundance; either other factors
that haven't been included in the model are
important, or there's a lot of stochasticity in
longnose dace abundance.

Similar tests
There are dozens of other multivariate statistical techniques that have been developed,

and picking the most appropriate one for your experiment, and interpreting the results, can
be difficult. My goal here is mainly to help you understand the results of the most common
technique, multiple regression; if you want to actually use multivariate techniques, you're
going to have to do a lot of reading in more specialized texts and consult with experts.

How to do multiple regression
Spreadsheet

If you're serious about doing multiple regressions as part of your research, you're going
to have to learn a specialized statistical program such as SAS or SPSS. I've written a
spreadsheet (http://udel.edu/~mcdonald/statmultreg.xls) that will enable you to do a
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multiple regression with up to 12 X variables and up to 1000 observations. It includes
histograms to help you decide whether to transform your variables, and scattergraphs of the
Y variable vs. each X variable so you can see if there are any non-linear relationships. It
doesn't do variable selection automatically, you manually choose which variables to
include.

Web pages
VassarStat, (http://faculty.vassar.edu/lowry/multU.html) Rweb

(http://bayes.math.montana.edu/cgi-bin/Rweb/buildModules.cgi) and AutoFit
(http://www.eskimo.com/~brainy/) are three web pages that are supposed to perform
multiple regression, but none of them works on my computer.

SAS
You use PROC REG to do multiple regression in SAS. Here is an example using the

data on longnose dace abundance described above.

data fish;
var stream $ longnosedace acreage do2 maxdepth no3 so4 temp;
cards;

BASIN_RUN  13  2528  9.6  80  2.28  16.75  15.3
====See the web page for the full data set====
WATTS_BR   19  510  6.7  82  5.25  14.19  26.5
;
proc reg data=fish;

model longnosedace=acreage do2 maxdepth no3 so4 temp /
selection=stepwise slentry=0.15 slstay=0.15 details=summary stb;

run;

In the MODEL statement, the dependent variable is to the left of the equals sign, and all
the independent variables are to the right. SELECTION determines which variable
selection method is used; choices include FORWARD, BACKWARD, STEPWISE, and
several others. You can omit the SELECTION parameter if you want to see the multiple
regression model that includes all the independent variables. SLENTRY is the significance
level for entering a variable into the model, if you're using FORWARD or STEPWISE
selection; in this example, a variable must have a P-value less than 0.15 to be entered into
the regression model. SLSTAY is the significance level for removing a variable in
BACKWARD or STEPWISE selection; in this example, a variable with a P-value greater
than 0.15 will be removed from the model. DETAILS=SUMMARY produces a shorter
output file; you can omit it to see more details on each step of the variable selection
process. The STB option causes the standard partial regression coefficients to be displayed.

Summary of Stepwise Selection

Variable Variable Number  Partial   Model
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Step  Entered  Removed Vars In   R-Sq.   R-Sq.   C(p)  F Value  Pr > F

1   acreage              1     0.1201  0.1201  14.243    9.01  0.0038
2   no3                  2     0.1193  0.2394   5.632   10.20  0.0022
3   maxdepth             3     0.0404  0.2798   4.037    3.59  0.0625

The summary shows that acreage was added to the model first, yielding an R2 of
0.1201. Next, no3 was added. The R2 increased to 0.2394, and the increase in R2 was
significant (P=0.0022). Next, maxdepth was added. The R2 increased to 0.2798, which was
not quite significant (P=0.0625); SLSTAY was set to 0.15, not 0.05, because you might
want to include this variable in a predictive model even if it's not quite significant. None of
the other variables increased R2 enough to have a P-value less than 0.15, and removing any
of the variables caused a decrease in R2 big enough that P was less than 0.15, so the
stepwise process is done.

Parameter Estimates

Parameter     Standard                 Standardized
Variable    DF   Estimate       Error  t Value  Pr > |t|   Estimate

Intercept    1  -23.82907    15.27399   -1.56   0.1237            0
acreage      1    0.00199  0.00067421    2.95   0.0045      0.32581
maxdepth     1    0.33661     0.17757    1.90   0.0625      0.20860
no3          1    8.67304     2.77331    3.13   0.0027      0.33409

The "parameter estimates" are the partial regression coefficients; they show that the
model is Yexp=0.00199(acreage)+0.3361(maxdepth)+8.67304(no3)−23.82907. The
"standardized estimates" are the standard partial regression coefficients; they show that no3
has the greatest contribution to the model, followed by acreage and then maxdepth. The
value of this multiple regression would be that it suggests that the acreage of a stream's
watershed is somehow important. Because watershed area wouldn't have any direct effect
on the fish in the stream, I would carefully look at the correlations between the acreage and
the other independent variables; I would also try to see if there are other variables that were
not analyzed that might be both correlated with watershed area and directly important to
fish, such as current speed, water clarity, or substrate type.

Further reading
Sokal and Rohlf, pp. 609-631.

Zar, pp. 413-450.
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Logistic regression

When to use it
You use simple logistic regression when you have one nominal variable with two

values (male/female, dead/alive, etc.) and one measurement variable. The nominal variable
is the dependent variable, and the measurement variable is the independent variable.

Multiple logistic regression is used when the dependent variable is nominal and there
is more than one independent variable. It is analogous to multiple linear regression, and all
of the same caveats apply. If you're an epidemiologist, you'll probably need to take a whole
course on multiple logistic regression; if you're any other kind of biologist, you'll probably
never use it. I won't discuss it any more here; if I say "logistic regression," I'm referring to
simple logistic regression.

Simple logistic regression is analogous to linear regression, except that the dependent
variable is nominal, not a measurement. One goal is to see whether the probability of
getting a particular value of the nominal variable is associated with the measurement
variable; the other goal is to predict the probability of getting a particular value of the
nominal variable, given the measurement variable.

Data with one nominal and one measurement variable can also be analyzed using a one-
way anova or a Student's t-test, and the distinction can be subtle. One clue is that logistic
regression allows you to predict the probability of the nominal variable. For example,
imagine that you had measured the cholesterol level in the blood of a large number of
55-year-old women, then followed up ten years later to see who had had a heart attack. You
could do a t-test, comparing the cholesterol levels of the women who did have heart attacks
vs. those who didn't, and that would be a perfectly reasonable way to test the null
hypothesis that cholesterol level is not associated with heart attacks; if the hypothesis test
was all you were interested in, the t-test would probably be better than the less-familiar
logistic regression. However, if you wanted to predict the probability that a 55-year-old
woman with a particular cholesterol level would have a heart attack in the next ten years, so
that doctors could tell their patients "If you reduce your cholesterol by 40 points, you'll
reduce your risk of heart attack by X percent," you would have to use logistic regression.

Another situation that calls for logistic regression, rather than an anova or t-test, is
when the values of the measurement variable are set by the experimenter, while the values
of the nominal variable are free to vary. For example, let's say you are studying the effect
of incubation temperature on sex determination in Komodo dragons. You raise 10 eggs at
30 C, 30 eggs at 32 C, 12 eggs at 34 C, etc., then determine the sex of the hatchlings. It
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would be silly to compare the mean incubation temperatures between male and female
hatchlings, and test the difference using an anova or t-test, because the incubation
temperature does not depend on the sex of the offspring; you've set the incubation
temperature, and if there is a relationship, it's that the sex of the offspring depends on the
temperature.

When there are multiple observations of the nominal variable for each value of the
measurement variable, as in the Komodo dragon example, you'll often sees the data
analyzed using linear regression, with the proportions treated as a second measurement
variable. Often the proportions are arc-sine transformed, because that makes the
distributions of proportions more normal. This is not horrible, but it's not strictly correct.
One problem is that linear regression treats all of the proportions equally, even if they are
based on much different sample sizes. If 6 out of 10 Komodo dragon eggs raised at 30 C
were female, and 15 out of 30 eggs raised at 32 C were female, the 60% female at 30 C and
50% at 32 C would get equal weight in a linear regression, which is inappropriate. Logistic
regression analyzes each observation (in this example, the sex of each Komodo dragon)
separately, so the 30 dragons at 32 C would have 3 times the weight of the 10 dragons at 30
C.

It is also possible to do logistic regression with two nominal variables, but to be honest,
I don't see the advantage of this over a chi-squared or G-test of independence.

Null hypothesis
The statistical null hypothesis is that the probability of a particular value of the nominal

variable is not associated with the value of the measurement variable; in other words, the
line describing the relationship between the measurement variable and the probability of
the nominal variable has a slope of zero.

How the test works
Simple logistic regression finds the equation that best predicts the value of the Y

variable for each value of the X variable. What makes logistic regression different from
linear regression is that the Y variable is not directly measured; it is instead the probability
of obtaining a particular value of a nominal variable. If you were studying people who had
heart attacks, the values of the nominal variable would be "did have a heart attack" vs.
"didn't have a heart attack." The Y variable used in logistic regression would then be the
probability of having a heart attack. This probability could take values from 0 to 1. The
limited range of this probability would present problems if used directly in a regression, so
the odds, Y/(1-Y), is used instead. (If the probability of a heart attack is 0.25, the odds of a
heart attack are 0.25/(1-0.25)=1/3. In gambling terms, this would be expressed as "3 to 1
odds against having a heart attack.") Taking the natural log of the odds makes the variable
more suitable for a regression, so the result of a logistic regression is an equation that looks
like this:

ln[Y/(1−Y)]=a+bX
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The slope (b) and intercept (a) of the best-fitting equation in a logistic regression are
found using the maximum-likelihood method, rather than the least-squares method used for
linear regression. Maximum likelihood is a computer-intensive technique; the basic idea is
that it finds the values of the parameters under which you would be most likely to get the
observed results.

There are several different ways of estimating the P-value. The Wald chi-square is
fairly popular, but it may yield inaccurate results with small sample sizes. The likelihood
ratio method may be better. It uses the difference between the probability of obtaining the
observed results under the logistic model and the probability of obtaining the observed
results in a model with no relationship between the independent and dependent variables. I
recommend you use the likelihood-ratio method; be sure to specify which method you've
used when you report your results.

Examples
McDonald (1985) counted allele frequencies at the mannose-6-phosphate isomerase

(Mpi) locus in the amphipod crustacean Megalorchestia californiana, which lives on sandy
beaches of the Pacific coast of North America. There were two common alleles, Mpi90 and
Mpi100. The latitude of each collection location, the count of each of the alleles, and the
proportion of the Mpi100 allele, are shown here:

location          latitude  Mpi90  Mpi100  p, Mpi100
Port Townsend, WA    48.1      47    139     0.748
Neskowin, OR         45.2     177    241     0.577
Siuslaw R., OR       44.0    1087   1183     0.521
Umpqua R., OR        43.7     187    175     0.483
Coos Bay, OR         43.5     397    671     0.628
San Francisco, CA    37.8      40     14     0.259
Carmel, CA           36.6      39     17     0.304
Santa Barbara, CA    34.3      30      0     0.000

Allele (Mpi90 or Mpi100) is the nominal variable, location is the hidden nominal
variable, and latitude is the measurement variable. If the biological question were "Do
different locations have different allele frequencies?", you would ignore latitude and do a
one-way anova; here the biological questions is "Are allele frequencies associated with
latitude?"

Note that although the proportion of the Mpi100 allele seems to increase with increasing
latitude, the sample sizes for the northern and southern areas are pretty small. Doing a
logistic regression, the result is chi2=83.3, 1 d.f., P=7×10−20. The equation is

ln(Y/(1−Y))=−7.6469+0.1786(latitude),

where Y is the predicted probability of getting an Mpi100 allele. Solving this for Y gives

Y=e−7.6469+0.1786(lat)/(1+e−7.6469+0.1786(lat)).
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This logistic regression line is shown on the graph; note that it has a gentle S-shape.

Mpi allele frequencies vs. latitude in the amphipod
Megalorchestia californiana. Error bars are 95%
confidence intervals; the thick black line is the

logistic regression line.

Imagine that you have measured antennal stroking speed for some male cucumber
beetles. You then present each beetle to a female and see whether mating occurs. Mating
would be the nominal variable (mated vs. not mated), and you would do a logistic
regression with the probability of mating as the Y variable and anntennal stroking speed as
the X variable. The result would tell you whether the stroking speed was significantly
associated with the probability of mating.

Graphing the results
If you have multiple observations for each value of the measurement variable, as in the

amphipod example above, you can plot a scattergraph with the measurement variable on
the X-axis and the proportions on the Y-axis. You might want to put 95% confidence
intervals on the points; this gives a visual indication of which points contribute more to the
regression (the ones with larger sample sizes have smaller confidence intervals).

There's no automatic way in spreadsheets to add the logistic regression line. Here's how
I got it onto the graph of the amphipod data. First, I put the latitudes in column A and the
proportions in column B. Then, using the Fill: Series command, I added numbers 30, 30.1,
30.2,…50 to cells A10 through A210. In column C I entered the equation for the logistic
regression line; in Excel format, it's

=exp(-7.6469+0.1786*(A10))/(1+exp(-7.6469+0.1786*(A10)))

for row 10. I copied this into cells C11 through C210. Then when I drew a graph of the
numbers in columns A, B, and C, I gave the numbers in column B symbols but no line, and
the numbers in column C got a line but no symbols.

If you only have one observation of the nominal variable for each value of the
measurement variable, it would be silly to draw a scattergraph, as each point on the graph
would be at either 0 or 1 on the Y-axis. If you have lots of data points, you can divide the
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measurement values into intervals and plot the proportion for each interval on a bar graph.
Here is data from the Maryland Biological Stream Survey (http://www.dnr.state.md.us/
streams/mbss/) on 2180 sampling sites in Maryland streams. The measurement variable is
dissolved oxygen concentration, and the nominal variable is the presence or absence of the
central stoneroller, Campostoma anomalum. The intervals are different widths so that each
interval includes roughly the same number of stream sites. If you use a bar graph to
illustrate a logistic regression, you should explain that the grouping was for heuristic
purposes only, and the logistic regression was done on the raw, ungrouped data.

Spreadsheets don't have an option to make bars of different widths, so I graphed these
data as a scattergraph. The first bar covers the interval from 0.25 to 5.65, and the
proportion is 0.018, so the first four rows on the spreadsheet are:

0.25      0
0.25  0.018
5.65  0.018
5.65      0

These values are connected with a red line, with no symbols. I got the heavy black line for
the logistic regression as described above for the amphipod graph. I used a graphics
program to paint the bars gray.

Proportion of streams with central stonerollers
vs. dissolved oxygen. Dissolved oxygen intervals

were set to have roughly equal numbers of
stream sites. The thick black line is the logistic
regression line; it is based on the raw data, not

the data grouped into intervals.
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Similar tests
It is possible to do logistic regression with a dependent variable that has more than two

values, known as a multinomial, polytomous, or polychotomous variable. This subject is
not covered here.

Multiple logistic regression is used when the dependent variable is nominal and there is
more than one independent variable. It is analogous to multiple linear regression, and all of
the same caveats apply.

Linear regression is used when the Y variable is a measurement variable. For example,
if you measured the length of time it took for male beetles to make and wanted to relate
that to stroking speed, you would use linear regression.

When there is just one measurement variable and one nominal variable, one-way anova
or a t-test could also be used to compare the means of the measurement variable between
the two groups. Conceptually, the difference is whether you think variation in the nominal
variable causes variation in the measurement variable (use a t-test) or variation in the
measurement variable causes variation in the probability of the nominal variable (use
logistic regression). You should also consider who you are presenting your results to, and
how they are going to use the information. For example, if you were only interested in
stroking speed and mating success in cucumber beetles, you could do a t-test to compare
average stroking speed between mated and unmated males. This would be simpler and
more familiar than logistic regression; your conclusion would be something like "The mean
stroking speed is 73 strokes per minute in mated males and 64 spm in unmated males, a
significant difference." Logistic regression is more difficult and less familiar, but you
would be able to express your results with statements such as "A male beetle who strokes a
female's antennae at 75 strokes per minute is twice as likely to be accepted by the female as
one who strokes 61 strokes per minute." This might be easier to understand, and therefore
more useful (especially if you're a male cucumber beetle).

How to do the test
Spreadsheet

I have written a spreadsheet to do simple logistic regression. (http://udel.edu/
~mcdonald/statlogistic.xls) You can enter the data either in summarized form (for example,
saying that at 30 C there were 7 male and 3 female Komodo dragons) or non-summarized
form (for example, entering each Komodo dragon separately, with "0" for a male and "1"
for a female). It uses the likelihood-ratio method for calculating the P-value. The
spreadsheet makes use of the "Solver" tool in Excel. If you don't see Solver listed in the
Tools menu, go to Add-Ins in the Tools menu and install Solver.

Web page
There is a very nice web page that will do logistic regression, (http://statpages.org/

logistic.html) with the likelihood-ratio chi-square. You can enter the data either in
summarized form or non-summarized form, with the values separated by tabs (which you'll
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get if you copy and paste from a spreadsheet) or commas. The amphipod data would be
entered like this:

48.1,47,139
45.2,177,241
44.0,1087,1183
43.7,187,175
43.5,397,671
37.8,40,14
36.6,39,17
34.3,30,0

SAS
Use PROC LOGISTIC for simple logistic regression. There are two forms of the

MODEL statement. When you have multiple observations for each value of the
measurement variable, your data set can have the measurement variable, the number of
"successes" (this can be either value of the nominal variable), and the total. Here is an
example using the amphipod data:

data amphipods;
input location $ latitude mpi90 mpi100;
total=mpi90+mpi100;
cards;

Port_Townsend,_WA    48.1      47    139
Neskowin,_OR         45.2     177    241
Siuslaw_R.,_OR       44.0    1087   1183
Umpqua_R.,_OR        43.7     187    175
Coos_Bay,_OR         43.5     397    671
San_Francisco,_CA    37.8      40     14
Carmel,_CA           36.6      39     17
Santa_Barbara,_CA    34.3      30      0
;
proc logistic data=amphipods;

model mpi100/total=latitude;
run;

Note that the new variable TOTAL is created in the DATA step by adding the number of
Mpi90 and Mpi100 alleles. The MODEL statement uses the number of Mpi100 alleles out
of the total as the dependent variable. The P-value would be the same if you used Mpi90;
the equation parameters would be different.

There is a lot of output from PROC LOGISTIC that you don't need. The program gives
you three different P-values; the likelihood ratio P-value is the most commonly used:

Testing Global Null Hypothesis: BETA=0
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Test               Chi-Square     DF   Pr > ChiSq

Likelihood Ratio      83.3007      1       <.0001 P-value
Score                 80.5733      1       <.0001
Wald                  72.0755      1       <.0001

The coefficients of the logistic equation are given under "estimate":

Analysis of Maximum Likelihood Estimates

Standard         Wald
Parameter   DF   Estimate      Error   Chi-Square   Pr > ChiSq

Intercept    1    -7.6469     0.9249      68.3605       <.0001
latitude     1     0.1786     0.0210      72.0755       <.0001

Using these coefficients, the maximum likelihood equation for the proportion of Mpi100
alleles at a particular latitude is

Y=e−7.6469+0.1786(latitude)/(1+e−7.6469+0.1786(latitude))

It is also possible to use data in which each line is a single observation. In that case, you
may use either words or numbers for the dependent variable. In this example, the data are
height (in inches) of the 2004 students of my class, along with their favorite insect
(grouped into beetles vs. everything else, where "everything else" includes spiders, which a
biologist really should know are not insects):

data insect;
input height insect $;
cards;

62  beetle
66  other

===See the web page for the full data set===
74  other
;
proc logistic data=insect;

model insect=height;
run;

The format of the results is the same for either form of the MODEL statement. In this case,
the model would be the probability of BEETLE, because it is alphabetically first; to model
the probability of OTHER, you would add an EVENT after the nominal variable in the
MODEL statement, making it MODEL INSECT (EVENT='OTHER')=HEIGHT;

Further reading
Sokal and Rohlf, pp. 767-778.
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Reference
McDonald, J.H. 1985. Size-related and geographic variation at two enzyme loci in

Megalorchestia californiana (Amphipoda: Talitridae). Heredity 54: 359-366.
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Multiple comparisons

Any time you reject a null hypothesis because a P-value is less than your critical value,
it's possible that you're wrong; the null hypothesis might really be true, and your significant
result might be due to chance. A P-value of 0.05 means that there's a 5 percent chance of
getting your observed result, if the null hypothesis were true. It does not mean that there's a
5 percent chance that the null hypothesis is true.

For example, if you do 200 statistical tests, and for all of them the null hypothesis is
actually true, you'd expect 10 of the tests to be significant at the P<0.05 level, just due to
chance. In that case, you'd have 10 statistically significant results, all of which were false
positives. The cost, in time, effort and perhaps money, could be quite high if you based
important conclusions on these false positives, and it would at least be embarrassing for
you once other people did further research and found that you'd been mistaken.

This problem, that when you do multiple statistical tests, some fraction will be false
positives, has received increasing attention in the last few years. This is important for such
techniques as the use of microarrays, which make it possible to measure RNA quantities for
tens of thousands of genes at once; brain scanning, in which blood flow can be estimated in
100,000 or more three-dimensional bits of brain; and evolutionary genomics, where the
sequences of every gene in the genome of two or more species can be compared. There is
no universally accepted approach for dealing with the problem of multiple comparisons; it
is an area of active research, both in the mathematical details and broader epistomological
questions.

Controlling the familywise error rate: Bonferroni
correction

The classic approach to the multiple comparison problem is to control the familywise
error rate. Instead of setting the critical P-level for significance, or alpha, to 0.05, a lower
alpha is used. If the null hypothesis is true for all of the tests, the probability of getting one
result that is significant at this new, lower alpha level is 0.05. In other words, if the null
hypotheses are true, the probability that the family of tests includes one or more false
positives due to chance is 0.05.

The most common way to control the familywise error rate is with the Bonferroni
correction. The significance level (alpha) for an individual test is found by dividing the
familywise error rate (usually 0.05) by the number of tests. Thus if you are doing 100
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statistical tests, the alpha level for an individual test would be 0.05/100=0.0005, and only
individual tests with P<0.0005 would be considered significant.

The Bonferroni correction is appropriate when a single false positive in a set of tests
would be a problem. For example, let's say you've developed a new chicken feed,
MiracleChickTM, and you're comparing it to traditional chicken feed. You give some
chickens the traditional feed and some other chickens the MiracleChick, then you compare
the following between the two groups of chickens: food consumption, growth rate, egg
production, egg size, feces production, phosphorus content of feces, nitrogen content of
feces, meat/bone ratio, white meat/dark meat ratio, and general prettiness. If you see a
significant improvement in any of these quantities, you'll start marketing the MiracleChick
on that basis, but if your significant result turns out to be a false positive, the farmers are
going to sue you. You've got ten statistical tests, so there's a good chance that one will be
significant at the 0.05 level, even if MiracleChick is exactly the same as traditional food.
Using the Bonferroni correction, you'd require the P-value to be less than 0.005, which
would reduce your chance of a false positive (and the resulting angry farmers).

The Bonferroni correction assumes that the tests are independent of each other, as when you are
comparing sample A with sample B, C with D, E with F etc. If you are comparing sample A with
sample B, A with C, A with D, etc., the comparisons are not independent. This occurs when doing
unplanned comparisons of means in anova, for which a variety of other techniques have been
developed.

While the Bonferroni correction does a good job of controlling the familywise error rate
for multiple, independent comparisons, it may lead to a very high rate of false negatives.
For example, if you are comparing the expression levels of 100,000 genes between two
kinds of cells, using the Bonferroni correction would mean that a t-test for an individual
gene would have to have P<0.0000005 to be considered significant. That could mean that
only genes with gigantic differences in expression level would be significant; there might
be a lot of genes with real, moderate-sized differences that would be overlooked, all
because you wanted to be sure that your results did not include a single false negative.

An important issue with the Bonferroni correction is deciding what a "family" of
statistical tests is. If you're testing 12 new chicken feeds, and you measure 10 different
quantities on the chickens, is each set of 10 tests for a single chicken feed one "family," so
your critical P-value is 0.05/10? Or is the whole set of 10 tests on 12 feeds one family, so
your critical P-value is 0.05/120? And what if three months later, you test 5 more chicken
feeds--now do you go back and test everything against 0.05/170? There is no firm rule on
this; you'll have to use your judgement, based on just how bad a false positive would be.
Obviously, you should make this decision before you look at the results, otherwise it would
be too easy to unconsiously rationalize a family size that gives you the results you want.

Controlling the false discovery rate:
Benjamini–Hochberg procedure

An alternative approach is to control the false discovery rate. This is the proportion of
"discoveries" (significant results) that are actually false positives. For example, let's say
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you're using microarrays to compare expression levels for 100,000 genes between liver
tumors and normal liver cells. You're going to do additional experiments on any genes that
show a significant difference between the normal and tumor cells, and you're willing to
accept up to 10 percent of the genes with significant results being false positives; you'll
find out they're false positives when you do the followup experiments. In this case, you
would set your false discovery rate to 10 percent.

One good technique for controlling the false discovery rate was briefly mentioned by
Simes (1986) and developed in detail by Benjamini and Hochberg (1995). Put the
individual P-values in order, from smallest to largest. The smallest P-value has a rank of
i=1, the next has i=2, etc. Then compare each individual P-value to (i/m)Q, where m is the
total number of tests and Q is the chosen false discovery rate. The largest P-value that has
P<(i/m)Q is significant, and all P-values smaller than it are also significant.

To illustrate this, here are some data on genotype frequencies in the oyster Crassostrea
virginica. McDonald et al. (1996) compared the genotype frequencies of 6 polymorphisms
to the frequencies expected under Hardy-Weinberg equilibrium, using goodness-of-fit tests.
There were two population samples, so there were a total of twelve P-values, shown here
ordered from smallest to largest. The value of (i/m)Q is shown for a false discovery rate of
Q=0.20.

Gene  Location  i   P-value   (i/m)Q
CV7.7     FL    1    0.010     0.017
CVJ5      FL    2    0.032     0.033
CVL1      SC    3    0.07      0.050
CVB2m     SC    4    0.07      0.067
CVB1      FL    5    0.20      0.083
CV7.7     SC    6    0.38      0.100
CVB2e     FL    7    0.48      0.117
CVB2m     FL    8    0.49      0.133
CVB2e     SC    9    0.60      0.150
CVB1      SC   10    0.68      0.167
CVJ5      SC   11    0.74      0.183
CVL1      FL   12    0.97      0.200

Reading down the column of P-values, the largest one with P<(i/m)Q is the second one,
CVJ5 in Florida, where the individual P value (0.032) is less than the (i/m)Q value of
0.033. Thus the first two tests would be significant. If you used a Bonferroni correction and
set the familywise error rate to 0.05, then each individual P-value would be compared to
0.05/12=0.0042, and none would have been significant.

Other, more complicated techniques, such as Reiner et al. (2003), have been developed
for controlling false discovery rate that may be more appropriate when there is lack of
independence in the data. If you're using microarrays, in particular, you need to become
familiar with this topic.

Multiple comparisons

235



When not to correct for multiple comparisons
The goal of multiple comparisons corrections is to reduce the number of false positives.

An inevitable byproduct of this is that you increase the number of false negatives, where
there really is an effect but you don't detect it as statistically significant. If false negatives
are very costly, you may not want to correct for multiple comparisons. For example, let's
say you've gone to a lot of trouble and expense to knock out your favorite gene,
mannose-6-phosphate isomerase (MPI), in a strain of mice that spontaneously develop lots
of tumors. Hands trembling with excitement, you get the first MPI-/- mice and start
measuring things: blood pressure, growth rate, maze-learning speed, bone density, general
prettiness, everything you can think of to measure on a mouse. You measure 50 things on
MPI-/- mice and normal mice, run tests, and the smallest P-value is 0.013 for a difference in
tumor size. If you use either a Bonferroni correction or the Benjamini and Hochberg
procedure, that P=0.013 won't be close to significant. Should you conclude that there's no
significant difference between the MPI-/- and MPI+/+ mice, write a boring little paper titled
"Lack of anything interesting in MPI-/- mice," and look for another project? No, your paper
should be "Possible effect of MPI on cancer." You should be suitably cautious, of course,
but the cost of a false positive--if further experiments show that MPI really has no effect on
tumors--is just a few more experiments. The cost of a false negative, on the other hand,
could be that you've missed out on a hugely important discovery.
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Meta-analysis

Meta-analysis is a statistical technique for combining the results of different studies to
see if the overall effect is significant. This is most often done when there are multiple
studies with conflicting results—a drug does or does not work, reducing salt in food does
or does not affect blood pressure, that sort of thing. Meta-analysis is a way of combining
the results of all the studies; ideally, the result is the same as doing one study with a really
big sample size, one large enough to conclusively demonstrate an effect if there is one, or
conclusively reject an effect if there isn't one of an appreciable size.

I'm going to outline the general steps involved in doing a meta-analysis, but I'm not
going to describe it in sufficient detail that you could do one yourself; if that's what you
want to do, see the Further Reading list at the bottom of this page. Instead, I hope to
explain some of the things you should look for when reading the results of a meta-analysis.

Decide which studies to include
Before you start collecting studies, it's important to decide which ones you're going to

include and which you'll exclude. Your criteria should be as objective as possible; someone
else should be able to look at your criteria and then include and exclude the exact same
studies that you did. For example, if you're looking at the effects of a drug on a disease,
you might decide that only double-blind, placebo-controlled studies are worth looking at,
or you might decide that single-blind studies (where the investigator knows who gets the
placebo, but the patient doesn't) are acceptable; or you might decide that any study at all on
the drug and the disease should be included.

You shouldn't use sample size as a criterion for including or excluding studies. The
statistical techniques used for the meta-analysis will give studies with smaller sample sizes
the lower weight they deserve.

Finding studies
The next step in a meta-analysis is finding all of the studies on the subject. A critical

issue in meta-analysis is what's known as the file-drawer effect; people who do a study
and fail to find a significant result are less likely to publish it than if they find a significant
result. Studies with non-significant results are generally boring; it's difficult to get up the
enthusiasm to write them up, and it's difficult to get them published in decent journals. It's
very tempting for someone with a bunch of boring, non-significant data to quietly put it in a
file drawer, say "I'll write that up when I get some free time," and then never actually get
enough free time.
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The reason the file-drawer effect is important to a meta-analysis is that even if there is
no real effect, 5% of studies will show a significant result at the P<0.05 level; that's what
P<0.05 means, after all, that there's a 5% probability of getting that result if the null
hypothesis is true. So if 100 people did experiments to see whether thinking about long
fingernails made your fingernails grow faster, you'd expect 95 of them to find non-
significant results. They'd say to themselves, "Well, that didn't work out, maybe I'll write it
up for the Journal of Fingernail Science someday," then go on to do experiments on
whether thinking about long hair made your hair grow longer and never get around to
writing up the fingernail results. The 5 people who did find a statistically significant effect
of thought on fingernail growth would jump up and down in excitement at their amazing
discovery, then get their papers published in Science or Nature. If you did a meta-analysis
on the published results on fingernail thought and fingernail growth, you'd conclude that
there was a strong effect, even though the null hypothesis is true.

To limit the file-drawer effect, it's important to do a thorough literature search,
including really obscure journals, then try to see if there are unpublished experiments. To
find out about unpublished experiments, you could look through summaries of funded grant
proposals, which for government agencies such as NIH and NSF are searchable online;
look through meeting abstracts in the approporate field; write to the authors of published
studies; and send out appeals on e-mail mailing lists.

You can never be 100% sure that you've found every study on your topic ever done.
Fortunately, if your meta-analysis shows a significant effect, there are ways to estimate
how many unpublished, non-significant studies there would have to be to make the overall
effect non-significant. If that number is absurdly large, you can be more confident that your
significant meta-analysis is not due to the file-drawer effect.

Extract the information
If the goal of a meta-analysis is to estimate the mean difference between two

treatments, you need the means, sample sizes, and a measure of the variation: standard
deviation, standard error, or confidence interval. If the goal is to estimate the association
between two measurement variables, you need the slope of the regression, the sample size,
and the r2. Hopefully this information is presented in the publication in numerical form.
Boring, non-significant results are more likely to be presented in an incomplete form, so
you shouldn't be quick to exclude papers from your meta-analysis just because all the
necessary information isn't presented in easy-to-use form in the paper. If it isn't, you might
need to write the authors, or measure the size and position of features on published graphs.

Do the meta-analysis
The basic idea of a meta-analysis is that the difference in means, slope of a regression,

or other statistic is averaged across the different studies. Experiments with larger sample
sizes get more weight, as do experiments with smaller standard deviations or higher r2

values. It is then possible to test whether this common estimate is significantly different
from zero.
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Interpret the results
Meta-analysis was invented to be a more objective way of surveying the literature on a

subject. A traditional literature survey consists of an expert reading a bunch of papers,
dismissing or ignoring those that they don't think are very good, then coming to some
conclusion based on what they think are the good papers. The problem with this is that it's
easier to see the flaws in papers that disagree with your preconceived ideas about the
subject and dismiss them, while deciding that papers that agree with your position are
acceptable.

The problem with meta-analysis is that a lot of scientific studies really are crap, and
pushing a bunch of little piles of crap together just gives you one big pile of crap. For
example, let's say you want to know whether moonlight-energized water cures headaches.
You expose some water to moonlight, give little bottles of it to 20 of your friends, and say
"Take this the next time you have a headache." You ask them to record the severity of their
headache on a 10-point scale, drink the moonlight-energized water, then record the severity
of their headache 30 minutes later. This study is crap—any reported improvement could be
due to the placebo effect, or headaches naturally getting better with time, or moonlight-
energized water curing dehydration just as well as regular water, or your friends lying
because they knew you wanted to see improvement. If you include this crappy study in a
meta-analysis, no amount of sophisticated statistical analysis is going to make its
crappiness go away.

The hard work of a meta-analysis is finding all the studies and extracting the necessary
information from them, so it's tempting to be impressed by a meta-analysis of a large
number of studies. A meta-analysis of 50 studies sounds more impressive than a meta-
analysis of 5 studies; it's 10 times as big and represents 10 times as much work, after all.
However, you have to ask yourself, "Why do people keep studying the same thing over and
over? What motivated someone to do that 50th experiment when it had already been done
49 times before?" Often, the reason for doing that 50th study is that the preceding 49
studies were flawed in some way. If you've got 50 studies, and 5 of them are better by some
objective criteria than the other 45, you'd be better off using just the 5 best studies in your
meta-analysis.

Example
Chondroitin is a polysaccharide derived from cartilage. It is commonly used by people

with arthritis in the belief that it will reduce pain, but clinical studies of its effectiveness
have yielded conflicting results. Reichenbach et al. (2007) performed a meta-analysis of
studies on chondroitin and arthritis pain of the knee and hip. They identified relevant
studies by electronically searching literature databases and clinical trial registries, manual
searching of conference proceedings and the reference lists of papers, and contacting
various experts in the field. Only trials that involved comparing patients given chondroitin
with control patients were used; the control could be either a placebo or no treatment. They
obtained the necessary information about the amount of pain and the variation by
measuring graphs in the papers, if necessary, or by contacting the authors.
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Effect of chondroitin vs. year of publication of
the study. Negative numbers indicate less pain
with condroitin than in the control group. The

linear regression is significant (r2=0.45,
P=0.001).

Effect of chondroitin vs. standard error of
the mean effect size. Negative numbers

indicate less pain with condroitin than in
the control group. The linear regression is

significant (r2=0.35, P=0.006).

The initial literature search yielded 291 potentially relevant reports, but after
eliminating those that didn't use controls, those that didn't randomly assign patients to the
treatment and control groups, those that used other substances in combination with
chondroitin, etc., those for which the necessary information wasn't available, they were left
with 20 trials.

The statistical analysis of all 20 trials showed a large, significant effect of chondroitin
in reducing arthritis pain. However, the authors noted that earlier studies, published in
1987-2001, had large effects, while more recent studies (which you would hope are better)
showed little or no effect of chondroitin. In addition, trials with smaller standard errors
(due to larger sample sizes or less variation among patients) showed little or no effect. In
the end, Reichenbach et al. (2007) analyzed just the three largest studies with what they
considered the best designs, and they showed essentially zero effect of chondroitin. They
concluded that there's no good evidence that chondroitin is effective for knee and hip
arthritis pain.

Further reading
Berman, N.G., and R.A. Parker. 2002. (http://www.biomedcentral.com/1471-2288/2/10/)

Meta-analysis: neither quick nor easy. BMC Med. Res. Meth. 2:10. [A good readable
introduction to medical meta-analysis, with lots of useful references.]
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Gurevitch, J., and L.V. Hedges. 2001. Meta-analysis: combining the results of independent
experiments. pp. 347-369 in Design and Analysis of Ecological Experiments, S.M.
Scheiner and J. Gurevitch, eds. Oxford University Press, New York. [Discusses the use
of meta-analysis in ecology, a different perspective than the more common uses of
meta-analysis in medical research and the social sciences.]

Hedges, L.V., and I. Olkin. 1985. Statistical methods for meta-analysis. Academic Press,
London. [I haven't read this, but apparently this is the classic text on meta-analysis.]
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Using spreadsheets for statistics

Real statisticians may sneer, but if you're like most biologists, you can do all of your
statistics with spreadsheets. You may spend months getting the most technologically
sophisticated new biological techniques to work, but in the end your data can be analzyed
with a simple chi-squared test, t-test or linear regression. The graphing abilities of
spreadsheets make it easy to inspect data for errors and outliers, look for non-linear
relationships and non-normal distributions, and display your final results. Even if you're
going to use something like SAS or SPSS, there will be many times when it's easier to enter
your data into a spreadsheet first, inspect it for errors, sort and arrange it, then export it into
a format suitable for your fancy-schmancy statistics package.

The dominant spreadsheet program by far is Excel, part of the Microsoft Office
package, available for Windows or Mac. If your computer already has Excel on it, there's
no real advantage to trying anything else. All of the spreadsheets on these web pages were
written with a ten-year-old version of Excel, and the instructions on this web page were
based on it; if you're using a newer version and notice that something doesn't work right,
please drop me a line and tell me about it.

If your computer doesn't have Excel on it, you could use Calc, part of the free, open-
source OpenOffice.org (http://openoffice.org) package. Calc does almost everything that
Excel does, with just enough exceptions to be annoying. Calc will open Excel files and can
save files in Excel format. The OpenOffice.org package is available for Windows, Mac,
and Linux; Mac users may want to use the NeoOffice (http://neooffice.org) port, which
looks and feels more like a regular Mac application (but is rather slow). OpenOffice.org
also includes a word processor (like Word) and presentation software (like PowerPoint).

For Linux users, Gnumeric (http://www.gnome.org/projects/gnumeric/) sounds like a
good, free, open-source spreadsheet program. Because it's a separate program, rather than
part of a large office suite, it should be faster than Calc. I haven't used it, so I don't know
how well my spreadsheets will work with it.

The instructions on this web page apply to both Calc and Excel, unless otherwise noted.

Basic spreadsheet tasks
I'm going to assume you know how to enter data into a spreadsheet, copy and paste,

insert and delete rows and columns, and other simple tasks. If you're a complete beginner,
you may want to look at tutorials on using Excel here (http://www.wesleyan.edu/libr/tut/
excel/index.html) , here (http://www.ischool.utexas.edu/technology/tutorials/office/excel/) ,

Handbook of Biological Statistics

242

http://udel.edu/~mcdonald/statsasintro.html
http://openoffice.org
http://neooffice.org
http://www.gnome.org/projects/gnumeric/
http://www.wesleyan.edu/libr/tut/excel/index.html
http://www.wesleyan.edu/libr/tut/excel/index.html
http://www.ischool.utexas.edu/technology/tutorials/office/excel/


or here (http://www.usd.edu/trio/tut/excel/) . Here are a few other things that will be useful
for handling data:

Separate text into columns
When you copy columns of data from a web page or text document, then paste them

into an Excel spreadsheet, all the data will be in one column. To put the data into multiple
columns, choose "Text to columns..." from the Data menu. If you choose "Delimited," you
can tell it that the columns are separated by spaces, commas, or some other character.
Check the "Treat consecutive delimiters as one" box if numbers may be separated by more
than one space, more than one tab, etc. If you choose "Fixed width," you can do things like
tell it that the first 10 characters go in column 1, the next 7 characters go in column 2, and
so on. The data will be entered into the columns to the right of the original column, so
make sure they're empty.

If you paste more text into the same spreadsheet, it will automatically be separated into
columns using the same delimiters. If you want to turn this off, select the column where
you want to paste the data, choose "Text to columns..." from the Data menu, and choose
"Delimited." Then unclick all the boxes for delimiters (spaces, commas, etc.) and click
"Finish." Now paste your data into the column.

In Calc, when you paste columns of data from a text document or web page into a
spreadsheet, you'll get a Text Import window that asks you how to divide the text up. Click
on the characters that separate the columns (usually spaces, tabs, or commas) and click on
"Merge Delimiters" if columns may be separated by more than one space or tab.

Series fill
This is most often used for numbering a bunch of rows. Let's say you have data in cells

B1 through E100, and you want to number the rows 1 through 100. Numbering them will
help you keep track of which row is which, and it will be especially useful if you want to
sort the data, then put them back in their original order. Put a "1" in cell A1, select cells
A1-A100, choose "Fill: Series..." from the Edit menu, and you'll put the numbers 1 through
100 in the cells.

Sorting
To sort a bunch of data, select the cells and choose "Sort" from the Data menu. You can

sort by up to three columns; for example, you could sort data on a bunch of chickens by
"Breed" in column A, "Sex" in column B, and "Weight" in column C, and it would sort the
data by breeds, then within each breed have all the females first and then all the males, and
within each breed/sex combination the chickens would be listed from smallest to largest.

If you've entered a bunch of data, it's a good idea to sort each column of numbers and
look at the smallest and largest values. This may help you spot numbers with misplaced
decimal points and other egregious typing errors, as they'll be much larger or much smaller
than the correct numbers.
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Graphing
See the web pages on graphing with Excel or graphing with Calc. Drawing some quick

graphs is another good way to check your data for weirdness. For example, if you've
entered the height and leg length of a bunch of people, draw a quick graph with height on
the X axis and leg length on the Y axis. The two variables should be pretty tightly
correlated, so if you see some outlier who's 2.10 meters tall and has a leg that's only 0.65
meters long, you know to double-check the data for that person.

Absolute and relative cell references
In the formula "=B1+C1", B1 and C1 are relative cell references. If this formula is in

cell D1, "B1" means "that cell that is two cells to the left." When you copy cell D1 into cell
D2, the formula becomes "=B2+C2"; when you copy it into cell G1, it would become
"=E1+F1". This is a great thing about spreadsheets; for example, if you have long columns
of numbers in columns A and B and you want to know the sum of each pair, you don't need
to type "=Bi+Ci" into each cell in column D, where i is the row number; you just type
"=B1+C1" once into cell D1, then copy and paste it into all the cells in column D at once.

Sometimes you don't want the cell references to change when you copy a cell; in that
case, you should use absolute cell references, indicated with a dollar sign. A dollar sign
before the letter means the column won't change, while a dollar sign before the number
means the row won't change. If the equation in cell E1 is "=$B1*C$1+$D$1^2" and you
copy it into cell F2, the first term would change from $B1 to $B2 (because you've moved
down one row), the second term would change from C$1 to D$1 (because you've moved
right one column), and the third term, $D$1, wouldn't change (because it has dollar signs
before both the letter and the number). So if you had 100 numbers in column B, you could
enter "=B1-AVERAGE(B$1:B$100)" in cell C1, copy it into cells C2 through C100, and
each value in column B would have the average of the 100 numbers subtracted from it.

Paste Special
When a cell has a formula in it (such as "=B1*C1+D1^2"), you see the numerical result

of the formula (such as "7.15") in the spreadsheet. If you copy and paste that cell, the
formula will be pasted into the new cell; unless the formula only has absolute cell
references, it will show a different numerical result. Even if you use only abolute cell
references, the result of the formula will change every time you change the values in B1,
C1 or D1. When you want to copy and paste the number that results from a function in
Excel, choose "Paste Special" from the Edit menu and then click the button that says
"Values." The number (7.15, in this example) will be pasted into the cell.

In Calc, choose "Paste Special" from the Edit menu, uncheck the boxes labelled "Paste
All" and "Formulas," and check the box labelled "Numbers."

Change number format
To change the number of decimal places that are displayed in a cell in Excel, choose

"Cells" from the Format menu, then choose the "Number" tab. Under "Category," choose
"Number" and tell it how many decimal places you want to display. Note that this only
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changes the way the number is displayed; all of the digits are still in the cell, they're just
invisible.

The default format in Excel ("General" format) automatically uses scientific notation
for very small or large numbers. If you've changed the format of a cell to "Number" format
with a fixed number of decimal places, very small numbers will be rounded to 0. If you see
a 0 in a spreadsheet where you expect a non-zero number (such as a P-value), change the
format to General.

The default format in Calc is a fixed format with only two digits past the decimal point,
and Calc doesn't have a format that automatically uses scientific notation for small
numbers, which is annoying. One way to get around this is to create a user-defined format.
Select the cells you want to fix, choose "Cells" from the Format menu, and paste the
following into the box labelled "Format code":

[>0.00001]0.######;[<-0.00001]0.######;0.00E-00

The spreadsheets I've created for these web pages use this format for the cells containing P-
values and other results. It will display 0 as 0.00E00, but otherwise it works pretty well.

If a column is too narrow to display a number in the specified format, digits to the right
of the decimal point will be rounded. If there are too many digits to the left of the decimal
point to display them all, the cell will contain "###". Make sure your columns are wide
enough to display all your numbers.

Useful spreadsheet functions
There are hundreds of functions in Excel and Calc; here are the ones that I find most

useful for statistics and general data handling. Note that where the argument (the part in
parentheses) of a function is "Y", it means a single number or a single cell in the
spreadsheet. Where the argument says "Ys", it means more than one number or cell. See
AVERAGE(Ys) for an example.

All of the examples here are given in Excel format. Calc uses a semicolon instead of a
comma to separate multiple parameters; for example, Excel would use "=ROUND(A1, 2)"
to return the value in cell A1 rounded to 2 decimal places, while Calc would use
"=ROUND(A1; 2)". If you import an Excel file into Calc or export a Calc file to Excel
format, Calc automatically converts between commas and semicolons. However, if you
type a formula into Calc with a comma instead of a semicolon, Calc acts like it has no idea
what you're talking about; all it says is "#NAME?".

I've typed the function names in all capital letters to make them stand out, but you can
use lower case letters.

Math functions
ABS(Y) Returns the absolute value of a number.

EXP(Y) Returns e to the yth power. This is the inverse of LN, meaning that EXP(LN(Y))
equals Y.
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LN(Y) Returns the natural logarithm (logarithm to the base e) of Y.

LOG(Y) Returns the base-10 logarithm of Y. The inverse of LOG is raising 10 to the Yth
power, meaning 10^(LOG(Y)) returns Y.

RAND() Returns a pseudorandom number, equal to or greater than zero and less than one.
You must use empty parentheses so the spreadsheet knows that RAND is a function.
For a pseudorandom number in some other range, just multiply; thus =RAND()*79
would give you a number greater than or equal to 0 and less than 79. The value will
change every time you enter something in any cell. One use of random numbers is for
randomly assigning individuals to different treatments; you could enter "=RAND()"
next to each individual, Copy and Paste Special the random numbers, Sort the
individuals based on the column of random numbers, then assign the first 10
individuals to the placebo, the next 10 individuals to 10 mg of the trial drug, etc.
A "pseudorandom" number is generated by a mathematical function; if you started with

the same starting number (the "seed"), you'd get the same series of numbers. Excel's
pseudorandom number generator bases its seed on the time given by the computer's internal
clock, so you won't get the same seed twice. There are problems with Excel's
pseudorandom number generator, but the numbers it produces are random enough for
anything you're going to do as a biologist.

ROUND(Y,D) Returns Y rounded to D digits. For example, =ROUND(37.38, 1) returns
37.4, =ROUND(37.38, 0) returns 37, and =ROUND(37.38, -1) returns 40. Numbers
ending in 5 are rounded up (away from zero), so =ROUND(37.35,1) returns 37.4 and
=ROUND(-37.35) returns -37.4.

SQRT(Y) Returns the square root of Y.

SUM(Ys) Returns the sum of a set of numbers.

Logical functions
AND(logical_test1, logical_test2,...) Returns TRUE if logical_test1, logical_test2... are all

true, otherwise returns FALSE. As an example, let's say that cells A1, B1 and C1 all
contain numbers, and you want to know whether they're all greater than 100. One way
to find out would be with the statement =AND(A1>100, B1>100, C1>100), which
would return TRUE if all three were greater than 100 and FALSE if any one were not
greater than 100.

IF(logical_test, A, B) Returns A if the logical test is true, B if it is false. As an example,
let's say you have 1000 rows of data in columns A through E, with a unique ID number
in column A, and you want to check for duplicates. Sort the data by column A, so if
there are any duplicate ID numbers, they'll be adjacent. Then in cell F1, enter
"=IF(A1=A2, "duplicate"," "). This will enter the word "duplicate" if the number in A1
equals the number in A2; otherwise, it will enter a blank space. Then copy this into
cells F2 through F999. Now you can quickly scan through the rows and see where the
duplicates are.
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ISNUMBER(Y) Returns TRUE if Y is a number, otherwise returns FALSE. This can be
useful for identifying cells with missing values. If you want to check the values in cells
A1 to A1000 for missing data, you could enter "=IF(ISNUMBER(A1), "OK",
"MISSING") into cell B1, copy it into cells B2 to B1000, and then every cell in A1 that
didn't contain a number would have "MISSING" next to it in column B.

OR(logical_test1, logical_test2,...) Returns TRUE if one or more of logical_test1,
logical_test2... are true, otherwise returns FALSE. As an example, let's say that cells
A1, B1 and C1 all contain numbers, and you want to know whether any is greater than
100. One way to find out would be with the statement =OR(A1>100, B1>100,
C1>100), which would return TRUE if one or more were greater than 100 and FALSE
if all three were not greater than 100.

Statistical functions
AVERAGE(Ys) Returns the arithmetic mean of a set of numbers. For example,

AVERAGE(B1..B17) would give the mean of the numbers in cells B1..B17, and
AVERAGE(7, A1, B1..C17) would give the mean of 7, the number in cell A1, and the
numbers in the cells B1..C17. Note that Excel only counts those cells that have numbers
in them; you could enter AVERAGE(A1:A100), put numbers in cells A1 to A9, and
Excel would correctly compute the arithmetic mean of those 9 numbers. This is true for
other functions that operate on a range of cells.

BINOMDIST(S, K, P, cumulative_probability) Returns the binomial probability of
getting S "successes" in K trials, under the hypothesis that the probability of a success is
P. The argument "cumulative_probability" should be TRUE if you want the cumulative
probability of getting S or fewer successes, while it should be FALSE if you want the
probability of getting exactly S successes. (Calc uses 1 and 0 instead of TRUE and
FALSE.)

CHIDIST(Y, df) Returns the probability associated with a variable, Y, that is chi-square
distributed with df degrees of freedom. If you use SAS or some other program and it
gives the result as "Chi-sq=78.34, 1 d.f., P<0.0001", you can use the CHIDIST function
to figure out just how small your P-value is; in this case, "=CHIDIST(78.34, 1)" yields
8.67×10-19.

CONFIDENCE(alpha, standard-deviation, sample-size) Returns the confidence interval
of a mean, assuming you know the population standard deviation. Because you don't
know the population standard deviation, you should never use this function; instead,
see the web page on confidence intervals for instructions on how to calculate the
confidence interval correctly.

COUNT(Ys)Counts the number of cells in a range that contain numbers; if you've entered
data into cells A1 through A9, A11, and A17, "=count(A1:A100)" will yield 11.

DEVSQ(Ys)Returns the sum of squares of deviations of data points from the mean. This is
what statisticians refer to as the "sum of squares."
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FDIST(Y, df1, df2) Returns the probability value associated with a variable, Y, that is F-
distributed with df1 degrees of freedom in the numerator and df2 degrees of freedom in
the denominator. If you use SAS or some other program and it gives the result as
"F=78.34, 1, 19 d.f., P<0.0001", you can use the FDIST function to figure out just how
small your P-value is; in this case, "=FDIST(78.34, 1, 19)" yields 3.62×10-8.

MEDIAN(Ys) Returns the median of a set of numbers. If the sample size is even, this
returns the mean of the two middle numbers.

MIN(Ys) Returns the minimum of a set of numbers. Useful for finding the range, which is
MAX(Ys)-MIN(Ys).

MAX(Ys) Returns the maximum of a set of numbers.

RANK(X, Ys, type) Returns the rank of X in the set of Ys. If type is set to 0, the largest
number has a rank of 1; if type is set to 1, the smallest number has a rank of 0. For
example, if cells A1:A8 contain the numbers 10, 12, 14, 14, 16, 17, 20, 21,
"=RANK(A2, A1:A8, 0)" returns 7 (the number 12 is the 7th largest in that list), and
"=RANK(A2, A1:A8, 1)" returns 2 (it's the 2nd smallest).
Spreadsheets give tied ranks the smallest rank; both of the 14's in the above list would

get a rank of 5, as they are tied for 5th largest. The nonparametric tests used in statistics
require that ties be given the average rank; both of the 14's in the above list should get a
rank of 5.5, the average of 5 and 6, as they are the 5th and 6th largest. This formula shows
how to get ranks with ties handled correctly:

=AVERAGE(RANK(A1,A1:A8,0),1+COUNT(A1:A8)-RANK(A1,A1:A8,1))

STDEV(Ys) Returns an estimate of the standard deviation based on a population sample.
This is the function you should use for standard deviation.

STDEVP(Ys) Returns the standard deviation of values from an entire population, not just a
sample. You should never use this function.

SUM(Ys) Returns the sum of the Ys.

SUMSQ(Ys) Returns the sum of the squared values. Note that statisticians use "sum of
squares" as a shorthand term for the sum of the squared deviations from the mean.
SUMSQ does not give you the sum of squares in this statistical sense; for the statistical
sum of squares, use DEVSQ. You will probably never use SUMSQ.

TDIST(Y, df, tails) Returns the probability value associated with a variable, Y, that is t-
distributed with df degrees of freedom and tails equal to one or two (you'll almost
always want the two-tailed test). If you use SAS or some other program and it gives the
result as "t=78.34, 19 d.f., P<0.0001", you can use the TDIST function to figure out just
how small your P-value is; in this case, "=TDIST(78.34, 19, 2)" yields 2.56×10-25.

VAR(Ys) Returns an estimate of the variance based on a population sample. This is the
function you should use for variance.
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VARP(Ys) Returns the variance of values from an entire population, not just a sample.
You should never use this function.
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Guide to good graphs with
Excel

Drawing graphs is an important part of presenting the results of your research. Here I
describe the features of clear, effective graphs, and I outline techniques for generating good
graphs using Excel (there's a similar page on generating good graphs with Calc, part of the
free OpenOffice.org (http://www.openoffice.org) suite of programs). There are other,
specialized graphing programs you can buy; you can even draw graphs with SAS, if you're
a crazy person. But with a little tweaking, you can generate excellent, publication-quality
graphs with the spreadsheet program you probably already have.

I don't like some of the default conditions in Excel, but you can get it to produce graphs
that are good enough for publication or presentations. If you don't have Excel, you may
want to consider OpenOffice.org, (http://www.openoffice.org) a free, open-source suite of
programs that includes Calc, which does most of what Excel does. It takes even more
tweaking to draw good graphs with Calc, but it is possible.

General tips for all graphs
• Don't clutter up your graph with unnecessary junk. Grid lines, background patterns,

3-D effects, unnecessary legends, excessive tick marks, etc. all distract from the
message of your graph.

• Do include all necessary information. Both axes of your graph should be clearly
labelled, including measurement units if appropriate. Symbols and patterns should
be identified in a legend on the graph, or in the caption. If the graph has "error
bars," the caption should explain whether they're 95 percent confidence interval,
standard error, standard deviation, comparison interval, or something else.

• Don't use color in graphs for publication. If your paper is a success, many people
will be reading photocopies or will print it on a black-and-white printer. If the
caption of a graph says "Red bars are mean HDL levels for patients taking 2000
mg niacin/day, while blue bars are patients taking the placebo," some of your
readers will just see gray bars and will be confused and angry. For bars, use solid
black, empty, gray, cross-hatching, vertical stripes, horizontal stripes, etc. Don't
use different shades of gray, they may be hard to distinguish in photocopies. There
are enough different symbols that you shouldn't need to use colors.
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• Do use color in graphs for presentations. It's pretty, and it makes it easier to
distinguish different categories of bars or symbols. But don't use red type on a blue
background (or vice-versa), as the eye has a hard time focusing on both colors at
once and it creates a distracting 3-D effect. And don't use both red and green bars
or symbols on the same graph; from 5 to 10 percent of the males in your audience
(and less than 1 percent of the females) have red-green colorblindness and can't
distinguish red from green.

Exporting graphs to other formats
Once you've drawn a graph, you'll probably want to export it to some other program.

For a print document or a presentation, you should be able to copy the graph and paste it
directly into the file. For other uses, copy the graph into a graphics program (such as Adobe
Illustrator, Adobe Photoshop, GIMP (http://www.gimp.org) , or OpenOffice.org Draw) and
save the file in .gif format (for use on the web) or .eps or .tiff formats (which some journals
require for submitted manuscripts).

Choosing the right kind of graph
There are many kinds of graphs--bubble graphs, pie graphs, doughnut graphs, radar

graphs--and each may be the best for some kinds of data. By far the most common graphs
in scientific publications are scatter graphs and bar graphs.

A scatter graph (also known as an X-Y graph) is used for graphing data sets consisting
of pairs of numbers. These could be measurement variables, or they could be nominal
variables summarized as percentages. The independent variable is plotted on the X-axis
(the horizontal axis), and the dependent variable is plotted on the Y-axis.

The independent variable is the one that you manipulate, and the dependent variable is
the one that you observe. For example, you might manipulate salt content in the diet and
observe the effect this has on blood pressure. Sometimes you don't really manipulate either
variable, you observe them both. In that case, if you are testing the hypothesis that changes
in one variable cause changes in the other, put the variable that you think causes the
changes on the X-axis. For example, you might plot "height, in cm" on the X-axis and
"number of head-bumps per week" on the Y-axis if you are investigating whether being tall
causes people to bump their heads more often. Finally, there are times when there is no
cause-and-effect relationship, in which case you can plot either variable on the X-axis; an
example would be a graph showing the correlation between arm length and leg length.

There are a few situations where it is common to put the independent variable on the Y-
axis. For example, in oceanography it is traditional to put "distance below the surface of the
ocean" on the Y-axis, with the top of the ocean at the top of the graph, and the dependent
variable (such as chlorophyll concentration, salinity, fish abundance, etc.) on the X-axis.
Don't do this unless you're really sure that it's a strong tradition in your field.

A bar graph is used for plotting means or percentages for different values of a nominal
variable, such as mean blood pressure for people on four different diets. Usually, the mean
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or percentage is on the Y-axis, and the different values of the nominal variable are on the
X-axis, yielding vertical bars.

Sometimes it is not clear whether the variable on the X-axis is a measurement or
nominal variable, and thus whether the graph should be a scatter graph or a bar graph. This
is most common with measurements taken at different times. In this case, I think a good
rule is that if you could have had additional data points in between the values on your X-
axis, then you should use a scatter graph; if you couldn't have additional data points, a bar
graph is appropriate. For example, if you sample the pollen content of the air on January
15, February 15, March 15, etc., you should use a scatter graph, with "day of the year" on
the X-axis. Each point represents the pollen content on a single day, and you could have
sampled on other days. When you look at the points for January 15 and February 15, you
connect them with a line (even if there isn't a line on the graph, you mentally connect
them), and that implies that on days in between January 15 and February 15, the pollen
content was intermediate between the values on those days. However, if you sampled the
pollen every day of the year and then calculated the mean pollen content for each month,
you should plot a bar graph, with a separate bar for each month. This is because the mental
connect-the-dots of a scatter graph of these data would imply that the months in between
January and February would have intermediate pollen levels, and of course there are no
months between January and February.

Drawing scatter graphs with Excel
1. Put your independent variable in one column, with the dependent variable in the

column to its right. You can have more than one dependent variable, each in its
own column; each will be plotted with a different symbol.

2. If you are plotting 95 percent confidence intervals, standard errors, or some other
kind of error bar, put the values in the next column. These should be confidence
intervals, not confidence limits; thus if your first data point has an X-value of 7 and
a Y-value of 4 ±1.5, you'd have 7 in the first column, 4 in the second column, and
1.5 in the third column. For confidence limits that are asymmetrical, such as the
confidence limits on a binomial percentage, you'll need two columns, one for the
difference between the percentage and the lower confidence limit, and one for the
difference between the percentage and the upper confidence limit.
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An Excel spreadsheet set up for a scatter graph
including confidence intervals.

3. Select the cells that have the data in them. Don't select the cells that contain the
confidence intervals.

4. From the "Insert" menu, choose "Chart" (or click on the little picture of a graph in
the task bar). Choose "XY (Scatter)" as your chart type. Do not choose "Line"; the
little picture may look like a scatter graph, but it isn't.

5. The next screen shows the "Data range," the cells that contain your data; you
shouldn't need to change anything here.

6. On the "Titles" tab of the "Chart Options" screen, enter titles for the X axis and Y
axis, including the units. A chart title is essential for a graph used in a presentation,
but optional in a graph used for a publication (since it will have a detailed caption).

7. On the "Gridlines" tab of the "Chart Options" screen, get rid of the gridlines;
they're ugly and unnecessary.

8. On the "Legend" tab of the "Chart Options" screen, get rid of the legend if you
only have one set of Y values. If you have more than one set of Y values, get rid of
the legend if you're going to explain the different symbols in the figure caption;
leave the legend on if you think that's the most effective way to explain the
symbols.

9. Click the "Finish" button, but you're far from done. Click on the white area outside
the graph to select the whole image, then drag the sides or corners to make the
graph the size you want.

10. Click in the gray area inside the graph, choose "Selected Plot Area" from the
"Format" menu, and then choose "None" under "Area." This will get rid of the ugly
gray background. Under "Border," make the color of the border black instead of
gray.

11. Click on the Y-axis, choose "Selected Axis" from the "Format" menu, and make
modifications to the tick marks, font and number format. Most publications
recommend sans-serif fonts (such as Arial, Geneva, or Helvetica) for figures. On
the "Font" tab, unselect "Auto scale," otherwise the font size will change when you
change the graph size. On the "Scale" tab, set the minimum and maximum values
of Y. The maximum should be a nice round number, somewhat larger than the
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highest point on the graph. If you're plotting a binomial percentage, don't make the
Y-scale greater than 100 percent. If you're going to be adding error bars, the
maximum Y should be high enough to include them. The minimum value on the Y
scale should usually be zero, unless your observed values vary over a fairly narrow
range. A good rule of thumb (that I just made up, so don't take it too seriously) is
that if your maximum observed Y is more than twice as large as your minimum
observed Y, your Y scale should go down to zero. If you're plotting multiple
graphs of similar data, they should all have the same scales for easier comparison.

12. Format your X-axis the same way you formatted your Y-axis.
13. Click on the Y-axis title, choose "Selected Axis Title" from the "Format" menu,

and adjust the font. Unselect "Auto scale" so it won't change the font size if you
adjust the size of the graph. Do the same for the X-axis title.

14. Pick one of the symbols, click on it, and choose "Selected Data Series" from the
"Format" menu. On the "Patterns" tab, choose the symbol you want (choose "No
Color" for the background to get a better view of the symbol choices). If you want
to connect the dots with a line, choose that.

15. If you want to add error bars, go to the "Y Error Bars" tab and choose "Both" under
"Display." Ignore the buttons for "standard deviation" and "standard error," even if
they sound like what you want. Instead, choose "Custom." Click on the icon next
to the box labelled "+" and then select the cells in your spreadsheet containing the
upper confidence interval. Do the same for the box labelled "-" and the lower
confidence interval (you'll be selecting the same cells, unless you have
asymmetrical confidence intervals).
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Adding error bars to a graph. Repeat steps 3, 4 and 5 for the box labelled "-".

16. Repeat the above for each set of symbols.
17. If you've added error bars, click on one of them and choose "Selected Error Bars"

from the "Format" menu. On the "Patterns" tab, you can adjust the look of the error
bars.
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18. If you want to add a regression line, click on one of the symbols and choose "Add
Trendline" from the "Chart" menu. Choose which kind you want (choose "Linear"
unless you really know what you're doing).

19. Click in the graph area, outside the graph, to select the whole box that includes the
graph and the labels. Choose "Selected Chart Area" from the "Format" menu. On
the "Patterns" tab, you'll probably want to make the border be "None." On the
"Properties" tab, choose "Don't move or size with cells," so the graph won't change
size if you adjust the column widths of the spreadsheet.

20. You should now have a beautiful, beautiful graph. You can click once on the graph
area (in the blank area outside the actual graph), copy it, and paste it into a word
processing document, graphics program or presentation.

The number of bird species observed in the
Christmas Bird Count vs. latitude at seven locations

in Delaware. Data points are the mean number of
species for the counts in 2001 through 2006, with

95 percent confidence intervals.

Back-transformed axis labels
If you have transformed your data, don't plot the untransformed data; instead, plot the

transformed data. For example, if your Y-variable ranges from 1 to 1000 and you've log-
transformed it, you would plot the logs on the Y-axis, which would range from 0 to 3 (if
you're using base-10 logs). If you square-root transformed those data, you'd plot the square
roots, which would range from 1 to about 32. However, you should put the back-
transformed numbers (1 to 1000, in this case) on the axes, to keep your readers from having
to do squaring or exponentiation in their heads.

I've put together three spreadsheets with graphs that you can use as templates: a
spreadsheet graph with log-transformed or square-root transformed X values
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(http://udel.edu/~mcdonald/statgraphtransformx.xls) , a spreadsheet graph with log-
transformed or square-root transformed Y values (http://udel.edu/~mcdonald/
statgraphtransformy.xls) , or a spreadsheet graph with log-transformed or square-root
transformed X and Y values (http://udel.edu/~mcdonald/statgraphtransformx.xls) . While
they're set up for log-transformed or square-root transformed data, it should be pretty
obvious how to modify them for any other transformation.

Abundance of the longnose dace, in number of fish per 75 linear
meters of stream, versus nitrate concentration. Fish abundance

was square-root transformed for the linear regression.

Drawing bar graphs with Excel
1. Put the values of the independent variable (the nominal variable) in one column,

with the dependent variable in the column to its right. The first column will be
used to label the bars or clusters of bars. You can have more than one dependent
variable, each in its own column; each will be plotted with a different pattern of
bar.

2. If you are plotting 95 percent confidence intervals or some other kind of error bar,
put the values in the next column. These should be confidence intervals, not
confidence limits; thus if your first data point has an X-value of 7 and a Y-value of
4 ±1.5, you'd have 7 in the first column, 4 in the second column, and 1.5 in the
third column. For confidence limits that are asymmetrical, such as the confidence
limits on a binomial percentage, you'll need two columns, one for the difference
between the percentage and the lower confidence limit, and one for the difference
between the percentage and the upper confidence limit.
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An Excel spreadsheet set up for a bar graph including confidence
intervals.

3. Select the cells that have the data in them. Do include the first column, with the
values of the nominal variable, but don't select cells that contain confidence
intervals.

4. From the "Insert" menu, choose "Chart" (or click on the little picture of a graph in
the task bar). Choose "Column" as your chart type, and the picture of bars next to
each other (not on top of each other) as the "Chart sub-type." Do not choose the
three-dimensional bars, as they just add a bunch of clutter to your graph without
conveying any additional information.

5. The next screen shows the "Data range," the cells that contain your data; you
shouldn't need to change anything here.

6. On the "Titles" tab of the "Chart Options" screen, enter titles for the X-axis and Y-
axis, including the units for the Y-axis. A chart title is essential for a graph used in
a presentation, but optional in a graph used for a publication (since it will have a
detailed caption). Because each bar or cluster of bars will be labelled on the X-
axis, you may not need an X-axis title.

7. On the "Gridlines" tab of the "Chart Options" screen, get rid of the gridlines;
they're ugly and unnecessary.

8. On the "Legend" tab of the "Chart Options" screen, get rid of the legend if you
only have one set of Y values. If you have more than one set of Y values, get rid of
the legend if you're going to explain the different bar patterns in the figure caption;
leave the legend on if you think that's the most effective way to explain the bar
patterns.

9. Click the "Finish" button, but you're not done yet. Click on the white area outside
the graph to select the whole image, then drag the sides or corners to make the
graph the size you want.

10. Click in the gray area inside the graph, choose "Selected Plot Area" from the
"Format" menu, and then choose "None" under "Area." This will get rid of the ugly
gray background. Under "Border," make the color of the border black instead of
gray.
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11. Click on the Y-axis, choose "Selected Axis" from the "Format" menu, and make
modifications to the tick marks, font, and number format. Most publications
recommend sans-serif fonts (such as Arial, Geneva, or Helvetica) for figures. On
the "Font" tab, unselect "Auto scale," otherwise the font size will change when you
change the graph size. On the "Scale" tab, set the minimum and maximum values
of Y. The maximum should be a nice round number, somewhat larger than the
highest point on the graph. If you're plotting a binomial percentage, don't make the
Y-scale greater than 100 percent. If you're going to be adding error bars, the
maximum Y should be high enough to include them. The minimum value on the Y
scale should usually be zero, unless your observed values vary over a fairly narrow
range. A good rule of thumb (that I just made up, so don't take it too seriously) is
that if your maximum observed Y is more than twice as large as your minimum
observed Y, your Y scale should go down to zero. If you're plotting multiple
graphs of similar data, they should all have the same scales for easier comparison.

12. Format your X-axis the same way you formatted your Y-axis. It doesn't have a
scale, of course. You may want to get rid of the tick marks, they don't really serve
a purpose.

13. Click on the Y-axis title, choose "Selected Axis Title" from the "Format" menu,
and adjust the font. Unselect "Auto scale" so it won't change the font size if you
adjust the size of the graph. Do the same for the X-axis title.

14. Pick one of the bars, click on it, and choose "Selected Data Series" from the
"Format" menu. On the "Patterns" tab, choose the color you want. Click on "Fill
effects," then the "Pattern" tab to get halftone grays (little black dots), hatching,
and other patterns that work well in black-and-white. On the "Options" tab, you
can adjust the width of the bars by changing the "Gap width."

15. If you want to add error bars, go to the "Y Error Bars" tab and choose "Both" under
"Display." Ignore the buttons for "standard deviation" and "standard error," even if
they sound like what you want. Instead, choose "Custom." Click on the icon next
to the box labelled "+" and then select the cells in your spreadsheet containing the
upper confidence interval. Do the same for the box labelled "-" and the lower
confidence interval (you'll be selecting the same cells, unless you have
asymmetrical confidence intervals).

16. Repeat the above for each set of bars.
17. If you've added error bars, click on one of them and choose "Selected Error Bars"

from the "Format" menu. On the "Patterns" tab, you can adjust the look of the error
bars.

18. Click in the graph area, outside the graph, to select the whole box that includes the
graph and the labels. Choose "Selected Chart Area" from the "Format" menu. On
the "Patterns" tab, you'll probably want to make the border be "None." On the
"Properties" tab, choose "Don't move or size with cells," so the graph won't change
size if you adjust the column widths of the spreadsheet.
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19. You should now have a beautiful, beautiful graph. You can click once on the graph
area (in the blank area outside the actual graph), copy it, and paste it into a word
processing document, graphics program or presentation.

The number of bird species observed in the Christmas Bird Count at seven
locations in Delaware. Data points are the mean number of species for the counts

in 2001 through 2006, with 95 percent confidence intervals.

Back-transformed axis labels in bar graphs
If you have transformed your data, don't plot the untransformed data; instead, plot the

transformed data. For example, if you've done an anova of log-transformed data, the bars
should represent the means of the log-transformed values. Excel has an option to make the
X-axis of a bar graph on a log scale, but it's pretty useless, as it only labels the tick marks at
1, 10, 100, 1000…. The only way I know of to get the labels at the right place is to format
the axis to not have labels or tick marks, then use the drawing and text tools to put tick
marks and labels at the right positions. Get the graph formatted and sized the way you want
it, then put in dummy values for the first bar to help you position the tick marks. For
example, if you've log-transformed the data and want to have 10, 20, 50, 100, 200, on the
Y-axis, give the first bar a value of LOG(10), then use the drawing tools to draw a tick
mark even with the top of the bar, then use the text tool to label it "10". Change the dummy
value to LOG(20), draw another tick mark, and so on.
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Guide to good graphs with Calc

Drawing graphs is an important part of presenting the results of your research. Here I
describe the features of clear, effective graphs, and I outline techniques for generating good
graphs using Calc, part of the free OpenOffice.org (http://www.openoffice.org) suite of
programs. (I've also got a page on good graphs with Excel). Calc can produce graphs
suitable for presentations and publication; the biggest deficiencies are the lack of a function
for adding error bars, and a limited selection of symbols. The error bar function may be
added to the next version of Calc; in the meantime, I've outlined tedious and clumsy ways
to trick it into adding error bars.

General tips for all graphs
• Don't clutter up your graph with unnecessary junk. Grid lines, background patterns,

3-D effects, unnecessary legends, excessive tick marks, etc. all distract from the
message of your graph.

• Do include all necessary information. Both axes of your graph should be clearly
labelled, including measurement units if appropriate. Symbols and patterns should
be identified in a legend on the graph, or in the caption. If the graph has "error
bars," the caption should explain whether they're 95 percent confidence interval,
standard error, standard deviation, or something else.

• Don't use color in graphs for publication. If your paper is a success, many people
will be reading photocopies or will print it on a black-and-white printer. If the
caption of a graph says "Red bars are mean HDL levels for patients taking 2000
mg niacin/day, while blue bars are patients taking the placebo," some of your
readers will just see gray bars and will be confused and angry. For bars, use solid
black, empty, gray, cross-hatching, vertical stripes, horizontal stripes, etc. Don't
use different shades of gray, they may be hard to distinguish in photocopies. There
are enough different symbols that you shouldn't need to use colors.

• Do use color in graphs for presentations. It's pretty, and it makes it easier to
distinguish different categories of bars or symbols. But don't use red type on a blue
background (or vice-versa), as the eye has a hard time focusing on both colors at
once and it creates a distracting 3-D effect. And don't use both red and green bars
or symbols on the same graph; from 5 to 10 percent of the males in your audience
(and less than 1 percent of the females) have red-green colorblindness and can't
distinguish red from green.
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Exporting graphs to other formats
Once you've drawn a graph, you'll probably want to export it to some other program.

For a print document or a presentation, you should be able to copy the graph and paste it
directly into the file. For other uses, copy the graph into a graphics program (such as Adobe
Illustrator, Adobe Photoshop, GIMP (http://www.gimp.org) , or OpenOffice.org Draw) and
save the file in .gif format (for use on the web) or .eps or .tiff formats (which some journals
require for submitted manuscripts).

Choosing the right kind of graph
There are many kinds of graphs--bubble graphs, pie graphs, doughnut graphs, radar

graphs--and each may be the best for some kinds of data. By far the most common graphs
in scientific publications are scatter graphs and bar graphs.

A scatter graph (also known as an X-Y graph) is used for graphing data sets consisting
of pairs of numbers. These could be measurement variables, or they could be nominal
variables summarized as percentages. The independent variable is plotted on the x-axis (the
horizontal axis), and the dependent variable is plotted on the y-axis.

The independent variable is the one that you manipulate, and the dependent variable is
the one that you observe. For example, you might manipulate salt content in the diet and
observe the effect this has on blood pressure. Sometimes you don't really manipulate either
variable, you observe them both. In that case, if you are testing the hypothesis that changes
in one variable cause changes in the other, put the variable that you think causes the
changes on the x-axis. For example, you might plot "height, in cm" on the x-axis and
"number of head-bumps per week" on the y-axis if you are investigating whether being tall
causes people to bump their heads more often. Finally, there are times when there is no
cause-and-effect relationship, in which case you can plot either variable on the x-axis; an
example would be a graph showing the correlation between arm length and leg length.

There are a few situations where it makes sense to put the independent variable on the
Y-axis. For example, in oceanography it is traditional to put "distance below the surface of
the ocean" on the Y-axis, with the top of the ocean at the top of the graph, and the
dependent variable (such as chlorophyll concentration, salinity, fish abundance, etc.) on the
X-axis. Don't do this unless you're really sure that it's a strong tradition in your field.

A bar graph is used for plotting means or percentages for different values of a nominal
variable, such as mean blood pressure for people on four different diets. Usually, the mean
or percentage is on the Y-axis, and the different values of the nominal variable are on the
X-axis, yielding vertical bars.

Sometimes it is not clear whether the variable on the x-axis is a measurement or
nominal variable, and thus whether the graph should be a scattergraph or a bar graph. This
is most common with measurements taken at different times. In this case, I think a good
rule is that if you could have had additional data points in between the values on your x-
axis, then you should use a scatter graph; if you couldn't have additional data points, a bar
graph is appropriate. For example, if you sample the pollen content of the air on January
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15, February 15, March 15, etc., you should use a scatter graph, with "day of the year" on
the x-axis. Each point represents the pollen content on a single day, and you could have
sampled on other days. When you look at the points for January 15 and February 15, you
connect them with a line (even if there isn't a line on the graph, you mentally connect
them), and that implies that on days in between January 15 and February 15, the pollen
content was intermediate between the values on those days. However, if you sampled the
pollen every day of the year and then calculated the mean pollen content for each month,
you should plot a bar graph, with a separate bar for each month. This is because the mental
connect-the-dots of a scatter graph of these data would imply that the months in between
January and February would have intermediate pollen levels, and of course there are no
months between January and February.

Drawing scatter graphs with Calc
1. Put your independent variable in one column, with the dependent variable in the

column to its right. You can have more than one dependent variable, each in its
own column; each will be plotted with a different symbol.

2. If you are plotting 95 percent confidence intervals, standard error, or some other
kind of error bar, copy each X-value twice into the first column. Put the confidence
limits in the same rows as the two duplicated X-values. The confidence limits for
each point should be in their own column. These should be confidence limits, not
the confidence interval; thus if your first data point has an X-value of 7 and a Y-
value of 4 ±1.5, you'd have three rows with 7 in the first column; the first row
would have 4 in the second column, the second row would have 2.5 in the third
column, and the third row would have 5.5 in the third column.

A Calc spreadsheet set up for a scatter graph including confidence
intervals.
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3. Select the cells that have the data in them, including the cells that contain
confidence limits.

4. From the "Insert" menu, choose "Chart" (or click on the little picture of a graph in
the task bar). Choose "XY Chart" (the picture of a graph with dots on it) as your
chart type. Do not choose "Lines"; the little picture with lines may look like an XY
graph, but it isn't.

5. On the "Choose a variant" screen, choose "Lines with symbols" if you're adding
error bars, and unclick the grid lines; they're ugly and unnecessary.

6. On the "Display" screen, enter titles for the X axis and Y axis, including the units.
A chart title is essential for a graph used in a presentation, but optional in a graph
used for a publication (since it will have a detailed caption). Get rid of the legend if
you only have one set of Y values. If you have more than one set of Y values, get
rid of the legend if you're going to explain the different symbols in the figure
caption; leave the legend on if you think that's the most effective way to explain
the symbols.

7. Click the "Create" button, but you're not done yet. Click on the white area outside
the graph to select the whole image, then drag the sides or corners to make the
graph the size you want.

8. Choose "Chart Wall" from the "Format" menu, and then choose "White" on the
"Area" tab. This will get rid of the ugly gray background. Under "Lines," make
style "Continuous" and the color "Black," to give you a border around the graph.

9. Choose "Axis" from the "Format" menu, then "Y axis", and make modifications to
the tick marks, font and number format. Most publications recommend sans-serif
fonts (such as Arial, Geneva, or Helvetica) for figures. On the "Scale" tab, set the
minimum and maximum values of Y. The maximum should be a nice round
number, somewhat larger than the highest point on the graph. If you're plotting a
binomial percentage, don't make the Y-scale greater than 100 percent. If you're
adding error bars, the maximum Y should be high enough to include them. The
minimum value on the Y scale should usually be zero, unless your observed values
vary over a fairly narrow range. A good rule of thumb (that I just made up, so don't
take it too seriously) is that if your maximum observed Y is more than twice as
large as your minimum observed Y, your Y scale should go down to zero. If you're
plotting multiple graphs of similar data, they should all have the same scales for
easier comparison.

10. Format your X-axis the same way you formatted your Y-axis.
11. Choose "Title" from the "Format" menu, then "Y axis title", and adjust the font. Do

the same for the X-axis title.
12. Pick one of the symbols, click on it, and choose "Object properties" from the

"Format" menu. On the "Line" tab, choose the kind of line you want connecting the
points, if any. Then choose the symbol under "Icon." On the "Statistics" tab,
choose whether you want a regression line.
Calc uses the same color for the background of the symbols, the line connecting
them, and the regression line. You can change the color of the regression line by
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clicking on it, then choosing "Object properties" from the "Format" menu. But the
only way to make the connect-the-dot line a different color from the symbol
background (such as a black line connecting open symbols, or an invisible line
connecting filled symbols) is to double-click on each individual symbol, choose
"Object properties" from the "Format" menu, and change the Line color. This will
change the background color of one symbol at a time. If you know of a way to
change all the symbol background colors at once, please let me know, as this is
really stupid.

13. Repeat the above for each set of symbols.
14. If you've added error bars, click on one of them and choose "Object Properties"

from the "Format" menu. Get rid of the symbols and make the line the color you
want. Do this for each error bar; they should all be the same color and thickness. If
an error bar is too small to click on it (you keep selecting the symbol instead), put a
fake number in the spreadsheet to make the error bar larger, then replace it with the
real number once you've formatted the error bar.

15. Choose "Chart Area" from the "Format" menu. On the "Lines" tab, you'll probably
want to make the border be "Invisible."

16. You should now have a fairly beautiful graph. You can click once on the graph
area, copy it, and paste it into a word processing document, graphics program or
presentation.

The number of bird species observed in the
Christmas Bird Count vs. latitude at seven locations

in Delaware. Data points are the mean number of
species for the counts in 2001 through 2006, with

95 percent confidence intervals.
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Back-transformed axis labels
If you have transformed your data, don't plot the untransformed data; instead, plot the

transformed data. For example, if your Y-variable ranges from 1 to 1000 and you've log-
transformed it, you would plot the logs on the Y-axis, which would range from 0 to 3 (if
you're using base-10 logs). If you square-root transformed those data, you'd plot the square
roots, which would range from 1 to about 32. However, you should put the back-
transformed numbers (1 to 1000, in this case) on the axes, to keep your readers from having
to do squaring or exponentiation in their heads.

I've put together three spreadsheets with graphs that you can use as templates: a
spreadsheet graph with log-transformed or square-root transformed X values
(http://udel.edu/~mcdonald/statgraphtransformx.ols) , a spreadsheet graph with log-
transformed or square-root transformed Y values (http://udel.edu/~mcdonald/
statgraphtransformy.ols) , or a spreadsheet graph with log-transformed or square-root
transformed X and Y values (http://udel.edu/~mcdonald/statgraphtransformx.ols) . While
they're set up for log-transformed or square-root transformed data, it should be pretty
obvious how to modify them for any other transformation. Although these graphs put the
tick marks in the right places, I couldn't figure out how to label the tick marks
automatically in Calc; you'll have to copy the graph to a graphics program and add the tick
mark labels there.

Abundance of the longnose dace, in number of fish per 75 linear
meters of stream, versus nitrate concentration. Fish abundance

was square-root transformed for the linear regression.

Drawing bar graphs without error bars using Calc
1. Put the values of the independent variable (the nominal variable) in one column,

with the dependent variable in the column to its right. The first column will be
used to label the bars or clusters of bars. You can have more than one dependent
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variable, each in its own column; each will be plotted with a different pattern of
bar.

2. Select the cells that have the data in them, including the first column, with the
values of the nominal variable.

3. From the "Insert" menu, choose "Chart" (or click on the little picture of a graph in
the task bar). On the "Choose a chart type" screen, choose "Columns." On the
"Choose a variant" screen, choose "Normal," the one with columns next to each
other. Unclick the grid lines; they're ugly and unnecessary.

4. On the "Display" screen, enter titles for the X axis and Y axis, including the units.
A chart title is essential for a graph used in a presentation, but optional in a graph
used for a publication (since it will have a detailed caption). Get rid of the legend if
you only have one set of Y values. If you have more than one set of Y values for
each value of the nominal variable, get rid of the legend if you're going to explain
the different bar patterns in the figure caption; leave the legend on if you think
that's the most effective way to explain the bar patterns.

5. Click the "Create" button, but you're not done yet. Click on the white area outside
the graph to select the whole image, then drag the sides or corners to make the
graph the size you want.

6. Choose "Chart Wall" from the "Format" menu, and then choose "White" on the
"Area" tab. This will get rid of the ugly gray background. Under "Lines," make
style "Continuous" and the color "Black," to give you a border around the graph.

7. Choose "Axis" from the "Format" menu, then "Y axis", and make modifications to
the tick marks, font and number format. Most publications recommend sans-serif
fonts (such as Arial, Geneva, or Helvetica) for figures. On the "Scale" tab, set the
minimum and maximum values of Y. The maximum should be a nice round
number, somewhat larger than the highest point on the graph. If you're plotting a
binomial percentage, don't make the Y-scale greater than 100 percent. The
minimum value on the Y scale should usually be zero, unless your observed values
vary over a fairly narrow range. A good rule of thumb (that I just made up, so don't
take it too seriously) is that if your maximum observed Y is more than twice as
large as your minimum observed Y, your Y scale should go down to zero. If you're
plotting multiple graphs of similar data, they should all have the same scales for
easier comparison.

8. Format your X-axis the same way you formatted your Y-axis.
9. Choose "Title" from the "Format" menu, then "Y axis title", and adjust the font. Do

the same for the X-axis title.
10. Pick one of the bars, click on it, and choose "Object properties" from the "Format"

menu. On the "Borders" tab, choose the kind of border you want for the bars, then
choose the pattern inside the bar on the "Area" tab. Then choose the symbol under
"Icon." On the "Options" tab, adjust the width of the bars.

11. Repeat the above for each set of bars.
12. Choose "Chart Area" from the "Format" menu. On the "Lines" tab, you'll probably

want to make the border be "Invisible."
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13. You should now have a beautiful, beautiful graph. You can click once on the graph
area (in the blank area outside the actual graph), copy it, and paste it into a word
processing document, graphics program or presentation.

Drawing bar graphs with error bars using Calc
Unlike Excel, Calc does not have an easy way to set confidence intervals or other kinds

of error bars on bar graphs. Here I describe a way to trick Calc into giving you error bars,
using a graph format designed for stock price and volume information. This works fine for
bar graphs with a single nominal variable. (If you want clusters of bars, follow these
instructions for setting up the data, leaving a blank row between each cluster of values.
You'll have to set the pattern for each bar individually, and you'll have to delete the bar
labels and add text labels for the clusters of bars.)

1. Put the values of the independent variable (the nominal variable) in the first
column, with the dependent variable in the second column. The third and fourth
columns should contain the upper and lower confidence limits. These should be
confidence limits, not the confidence interval; thus if your first data point has a Y-
value of 4 ±1.5, you'd have a row with the label in the first column, 4 in the second
column, 2.5 in the third column, and 5.5 in the fourth column.

A Calc spreadsheet set up for a bar graph including confidence intervals.

2. Select the cells that have the data in them, including the first column, with the
values of the nominal variable.

3. From the "Insert" menu, choose "Chart" (or click on the little picture of a graph in
the task bar). On the "Choose a chart type" screen, choose "Stock chart" (it has
little rectangle with error bars). On the "Choose a variant" screen, choose "Stock
chart 3," the one with blue columns and little error bars. Unclick the grid lines;
they're ugly and unnecessary.

4. On the "Display" screen, enter titles for the X axis and Y axis, including the units.
A chart title is essential for a graph used in a presentation, but optional in a graph
used for a publication (since it will have a detailed caption). Get rid of the legend.
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5. Click the "Create" button, but you're not done yet. Click on the white area outside
the graph to select the whole image, then drag the sides or corners to make the
graph the size you want.

6. The stock graph has two Y-axes, one for stock prices and one for stock volume.
Choose "Axis" from the "Format" menu, then "Y axis," and make modifications to
the tick marks, font and number format. Most publications recommend sans-serif
fonts (such as Arial, Geneva, or Helvetica) for figures. On the "Scale" tab, set the
minimum and maximum values of Y. The maximum should be a nice round
number, somewhat larger than the highest point on the graph. If you're plotting a
binomial percentage, don't make the Y-scale greater than 100 percent. The
minimum value on the Y scale should usually be zero, unless your observed values
vary over a fairly narrow range. A good rule of thumb (that I just made up, so don't
take it too seriously) is that if your maximum observed Y is more than twice as
large as your minimum observed Y, your Y scale should go down to zero. If you're
plotting multiple graphs of similar data, they should all have the same scales for
easier comparison.

7. Format the right Y-axis the same way you formatted the left by choosing "Axis,"
then "Secondary Y axis" from the "Format" menu. Make sure the scale is the same
as for the left Y-axis. On the "Scale" tab, unclick all the interval marks. On the
"Label" tab, unclick "Show labels" to get rid of the numbers.

8. Choose "Chart Wall" from the "Format" menu, and then choose "White" on the
"Area" tab. This will get rid of the ugly gray background. Under "Lines," make
style "Continuous" and the color "Black," to give you a border around the graph.

9. Format your X-axis the same way you formatted your Y-axis.
10. Choose "Title" from the "Format" menu, then "Y axis title", and adjust the font. Do

the same for the X-axis title.
11. Pick one of the bars, click on it, and choose "Object properties" from the "Format"

menu. On the "Borders" tab, choose the kind of border you want for the bars, then
choose the pattern inside the bar on the "Area" tab. Then choose the symbol under
"Icon." On the "Options" tab, adjust the width of the bars.

12. Choose "Chart Area" from the "Format" menu. On the "Lines" tab, you'll probably
want to make the border be "Invisible."

13. You should now have a beautiful, beautiful graph. You can click once on the graph
area (in the blank area outside the actual graph), copy it, and paste it into a word
processing document, graphics program or presentation.
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The number of bird species observed in the Christmas Bird Count at seven
locations in Delaware. Data points are the mean number of species for the counts in

2001 through 2006, with 95 percent confidence intervals.

Back-transformed axis labels in bar graphs
If you have transformed your data, don't plot the untransformed data; instead, plot the

transformed data. For example, if you've done an anova of log-transformed data, the bars
should represent the means of the log-transformed values. Calc has an option to make the
X-axis of a bar graph on a log scale, but it's pretty useless, as it only labels the tick marks at
1, 10, 100, 1000…. The only way I know of to get the labels at the right place is to format
the axis to not have labels or tick marks, then use the drawing and text tools to put tick
marks and labels at the right positions. Get the graph formatted and sized the way you want
it, then put in dummy values for the first bar to help you position the tick marks. For
example, if you've log-transformed the data and want to have 10, 20, 50, 100, 200, on the
Y-axis, give the first bar a value of LOG(10), then use the drawing tools to draw a tick
mark even with the top of the bar, then use the text tool to label it "10". Change the dummy
value to LOG(20), draw another tick mark, and so on.
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Length of the anterior adductor muscle scar
divided by total length in Mytilus trossulus.

Means ±one standard error are shown for five
locations.

Presenting data in tables

Graph or table?
For a presentation, you should almost always use a graph, rather than a table, to present

your data. It's easier to compare numbers to each other if they're represented by bars or
symbols on a graph, rather than numbers. Here's data from the one-way anova page
presented in both a graph and a table:

Length of the anterior adductor muscle
scar divided by total length in Mytilus

trossulus. SE: standard error. N:
sample

size.

Location
Mean
AAM/
length

SE N

Tillamook 0.080 0.0038 10
Newport 0.075 0.0030 8
Petersburg 0.103 0.0061 7
Magadan 0.078 0.0046 8
Tvarminne 0.096 0.0053 6
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It's a lot easier to look at the graph and quickly see that the AAM/length ratio is highest
at Petersburg and Tvarminne, while the other three locations are lower and about the same
as each other. If you put this table in a presentation, you would have to point your laser
frantically at one of the 15 numbers and say, "Here! Look at this number!" as your
audience's attention slowly drifted away from your science and towards the refreshments
table. "Would it be piggish to take a couple of cookies on the way out of the seminar, to eat
later?" they'd be thinking. "Mmmmm, cookies...."

In a publication, the choice between a graph and a table is trickier. A graph is still
easier to read and understand, but a table provides more detail. Most of your readers will
probably be happy with a graph, but a few people who are deeply interested in your results
may want more detail than can be shown in a graph. If anyone is going to do a meta-
analysis of your data, for example, they'll want means, sample sizes, and some measure of
variation (standard error, standard deviation, or confidence limits). If you've done a bunch
of statistical tests and someone wants to reanalyze your data using a correction for multiple
comparisons, they'll need the exact P-values, not just stars on a graph indicating
significance. Someone who is planning a similar experiment to yours who is doing power
analysis will need some measure of variation, as well.

Editors generally won't let you show a graph with the exact same information that
you're also presenting in a table. What you can do for many journals, however, is put
graphs in the main body of the paper, then put tables as supplemental material. Because
these supplemental tables are online-only, you can put as much detail in them as you want;
you could even have the individual measurements, not just means, if you thought it might
be useful to someone.

Making a good table
Whatever word processor you're using probably has the ability to make good tables.

Here are some tips:

• Each column should have a heading. It should include the units, if applicable.
• Don't separate columns with vertical lines. In the olden days of lead type, it was

difficult for printers to make good-looking vertical lines; it would be easy now, but
most journals still prohibit them.

• When you have a column of numbers, make sure the decimal points are aligned
vertically with each other.

• Use a reasonable number of digits. For nominal variables summarized as
proportions, use two digits for N less than 101, three digits for N from 101 to 1000,
etc. This way, someone can use the proportion and the N and calculate your
original numbers. For example, if N is 143 and you give the proportion as 0.22, it
could be 31/143 or 32/143; reporting it as 0.217 lets anyone who's interested
calculate that it was 31/143. For measurement variables, you should usually report
the mean using one more digit than the individual measurement has; for example,
if you've measured hip extension to the nearest degree, report the mean to the

Handbook of Biological Statistics

272

http://udel.edu/~mcdonald/statmeta.html
http://udel.edu/~mcdonald/statmeta.html
http://udel.edu/~mcdonald/statmultcomp.html
http://udel.edu/~mcdonald/statmultcomp.html
http://udel.edu/~mcdonald/statsampsize.html
http://udel.edu/~mcdonald/statsampsize.html


nearest tenth of a degree. The standard error or other measure of variation should
have two or three digits. P-values are usually reported with two digits (P=0.44,
P=0.032, P=2.7×10-5, etc.).

• Don't use excessive numbers of horizontal lines. You'll want horizontal lines at the
top and bottom of the table, and a line separating the heading from the main body,
but that's probably about it. The exception is when you have multiple lines that
should be grouped together. If the table of AAM/length ratios above had separate
numbers for male and female mussels at each location, it might be acceptable to
separate the locations with horizontal lines.

• Table formats sometimes don't translate well from one computer program to
another; if you prepare a beautiful table using a Brand X word processor, then save
it in Microsoft Word format or as a pdf to send to your collaborators or submit to a
journal, it may not look so beautiful. So don't wait until the last minute; try out any
format conversions you'll need, well before your deadline.
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Getting started with SAS

SAS, SPSS and Stata are the most popular software packages for doing serious
statistics. I have a little experience with SAS, so I've prepared this web page to get you
started on the basics. UCLA's Academic Technology Services department has prepared
very useful guides to SAS (http://www.ats.ucla.edu/stat/sas/) , SPSS
(http://www.ats.ucla.edu/stat/spss/) and Stata (http://www.ats.ucla.edu/stat/stata/) .

SAS may seem intimidating and old-fashioned; accomplishing anything with it requires
writing what is, in essence, a computer program, one where a misplaced semicolon can
have disastrous results. But I think that if you take a deep breath and work your way
patiently through the examples, you'll soon be able to do some pretty cool statistics.

The instructions here are for the University of Delaware, but most of it should apply
anywhere that SAS is installed. There are three ways of using SAS:

• in batch mode. This is what I recommend, and this is what I'll describe below.
• interactively in line mode. I don't recommend this.
• interactively with the Display Manager System. From what I've seen, this isn't very

easy. If you really want to try it, here are instructions (http://www.udel.edu/topics/
software/special/statmath/sas/) . Keep in mind that "interactive" doesn't mean "user
friendly graphical interface like you're used to"; you still have to write the same
SAS programs.

SAS runs on a mainframe computer, not your personal computer. You'll have to
connect to Strauss, one of the University of Delaware's mainframes. The operating system
for Strauss is Unix; in order to run SAS on Strauss in batch mode, you'll have to learn a few
Unix commands.

Getting connected to Strauss from a Mac
On a Mac, find the program Terminal; it should be in the Utilities folder, inside your

Applications folder. You'll probably want to drag it to your taskbar for easy access in the
future. The first time you run Terminal, go to Preferences in the Terminal window and set
"Declare terminal type ($TERM) as:" to "vt100". Then go to Window Settings in the
Terminal menu, choose Keyboard from the pulldown menu at the top of the window, and
check the box that says "Delete key sends backspace."

When you start up Terminal, you'll get a prompt that looks like this:
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Your-Names-Computer:~ yourname$

After the dollar sign, type ssh userid@strauss.udel.edu, where userid is your
UDelNet ID, and hit return. It will ask you for your password; enter it. You'll then be
connected to Strauss, and you'll get this prompt:

strauss.udel.edu%

Getting connected to Strauss from Windows
On a Windows computer, see if the program SSH Secure Shell is on your computer,

and if it isn't, download it from UDeploy (http://udeploy.udel.edu/) . Start up the program,
then click on "quick connect" and enter strauss.udel.edu for the host name and your
UDelNet ID for the username. It will ask you for your password; if you enter it
successfully, you'll get this prompt:

strauss.udel.edu%

Getting connected to Strauss from Linux
If you're running Linux, you're already enough of a geek that you don't need my help

getting connected to the mainframe.

A little bit of Unix
The operating system on Strauss is Unix, so you've got to learn a few Unix commands.

Unix was apparently written by people for whom typing is very painful, so most of the
commands are a small number of cryptic letters. Case does matter; don't enter CD and think
it means the same thing as cd. Here is all the Unix you need to know to run SAS.
Commands are in bold and file and directory names, which you choose, are in italics.
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ls Lists all of the file names in your current directory.

pico filename

pico is a text editor; you'll use it for writing SAS programs. Enter pico
practice.sas to open an existing file named practice.sas, or create it if it
doesn't exist. To exit pico, enter the control and X keys. You have to use
the arrow keys, not the mouse, to move around the text once you're in a
file. For this reason, I prefer to create and edit SAS programs in a text
editor on my computer (TextEdit on a Mac, NotePad on Windows), then
copy and paste them into a file I've created with pico. I then use pico for
minor tweaking of the program. Note that there are other popular text
editors, such as vi and emacs, and one of the defining characters of a
serious computer geek is a strong opinion about the superiority of their
favorite text editor and total loserness of all other text editors. To avoid
becoming one of them, try not to get emotional about pico.

cat filename
Opens a file for viewing and printing. It will automatically take you to the
end of the file, so you'll have to scroll up. To print, you may want to copy
what you want to a word processor file for easier formatting.

mv oldname
newname

Changes the name of a file from oldname to newname. When you run
SAS on the file practice.sas, the output will be in a file called practice.lst.
Before you make changes to practice.sas and run it again, you may want
to change the name of practice.lst to something else, so it won't be
overwritten.

cp oldname
newname Makes a copy of file oldname with the name newname.

rm filename Deletes a file.
logout Logs you out of Strauss.

mkdir
directoryname

Creates a new directory. You don't need to do this, but if you end up
creating a lot of files, it will help keep them organized into different
directories.

cd
directoryname

Changes from one directory to another. For example, if you have a
directory named sasfiles in your home directory, enter cd sasfiles. To go
from within a directory up to your home directory, just enter cd.

rmdir
directoryname

Deletes a directory, if it doesn't have any files in it. If you want to delete a
directory and the files in it, first go into the directory, delete all the files
in it using rm, then delete the directory using rmdir.

sas filename
Runs SAS. Be sure to enter sas filename.sas. If you just enter sas and
then hit return, you'll be in interactive SAS mode, which is scary; enter
;endsas; if that happens and you need to get out of it.

Writing a SAS program
A SAS program consists of a series of commands. Each command is one or more

words, followed by a semicolon. You can put comments into your program to remind you
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of what you're trying to do; these comments have a slash and asterisk on each side, like
this:

/*This is a comment. It is not read by the SAS program.*/

The SAS program has two basic parts, the DATA step and the PROC step. (Note--I'll
capitalize all SAS commands to make them stand out, but you don't have to when you write
your programs.) The DATA step reads in data, either from another file or from within the
program.

In a DATA step, you first say "DATA dataset;" where dataset is an arbitrary name you
give the dataset. Then you say "INPUT variable1 variable2...;" giving an arbitrary name to
each of the variables that is on a line in your data. So if you have a data set consisting of
the length and width of mussels from two different species, you could start the program by
writing:

data mussels;
input species $ length width;

If you are putting the data directly in the program, the next step is a line that says
"CARDS;", followed by the data, followed by a semicolon. Each observation is on a
separate line, with the variables separated by one or more spaces:

data mussel;
input species $ length width;
cards;

edulis 49.0 11.0
trossulus 51.2 9.1
trossulus 45.9 9.4
edulis 56.2 13.2
edulis 52.7 10.7
edulis 48.4 10.4
trossulus 47.6 9.5
trossulus 46.2 8.9
trossulus 37.2 7.1
;

A variable name for a nominal variable (a name or character) has a space and a dollar
sign ($) after it. If you want to treat a number as a nominal variable, such as an ID number,
put a dollar sign after the name of the variable. Don't use spaces within variables; use
Medulis or M_edulis, not M. edulis (there are ways of handling variables
containing spaces, but they're complicated).

If you have a large data set, it may be more convenient to keep it in a separate file from
your program. To read in data from another file, use the INFILE statement, with the name
of the data file in single quotes. In this example, I use the FIRSTOBS option to tell SAS
that the first observation is on line 2 of the data file, because line 1 has column headings
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that remind me what the variables are. You don't have to do this, but I find it's a good idea
to have one or more lines of explanatory information at the start of a data file; otherwise,
it's too easy to forget what all the numbers are.

data mussel;
infile 'shells.dat' firstobs=2;
input species $ length width;

The DATA statement can create new variables from mathematical operations on the
original variables, like this:

data mussel;
infile 'shells.dat' firstobs=2;
input species $ length width;
loglength=log10(length);
shellratio=width/length;

The PROC step
Once you've entered in the data, it's time to analyze it. This is done with one or more

PROC commands. For example, to calculate the mean and standard deviation of the
lengths, widths, and log-transformed lengths, you would use PROC MEANS:

proc means data=mussel mean std;
var length width loglength;
run;

PROC MEANS tells SAS which procedure to run. It is followed by certain options.
DATA=MUSSEL tells it which data set to analyze. MEAN and STD are options that tell
PROC MEANS to calculate the mean and standard deviation. On the next line, VAR
LENGTH WIDTH LOGLENGTH tells PROC MEANS which variables to analyze. RUN
tells it to run.

Now put it all together and run a SAS program. Connect to Strauss and use pico to
create a file named "test.sas". Copy and paste the following into the file:

data mussel;
input species $ length width;
loglength=log10(length);
shellratio=width/length;
cards;

edulis 49.0 11.0
tross 51.2 9.1
tross 45.9 9.4
edulis 56.2 13.2
edulis 52.7 10.7
edulis 48.4 10.4
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tross 47.6 9.5
tross 46.2 8.9
tross 37.2 7.1
;
proc means data=mussel mean std;

var length width loglength;
run;

Then exit pico (hit control-X). At the dollar sign prompt, enter sas test.sas. Then
enter ls to list the file names; you should see new files named test.log and
test.lst. First, enter cat test.log to look at the log file. This will tell you whether
there are any errors in your SAS program. Then enter cat practice.lst to look at the
output from your program. You should see something like this:

The SAS System

The MEANS Procedure

Variable             Mean         Std Dev
-----------------------------------------
length         48.2666667       5.2978769
width           9.9222222       1.6909892
loglength       1.6811625       0.0501703
-----------------------------------------

If you do, you've successfully run SAS. Yay!

PROC SORT and PROC PRINT
Specific statistical procedures are described on the web page for each test. Two that are

of general use are PROC SORT and PROC PRINT. PROC SORT sorts the data by one or
more variables. For many procedures, you need to sort the data first. PROC PRINT writes
the data set to the output file. You can use it to make sure that your transformations,
sorting, etc. have worked properly. You can sort the data by more than one variable; this
example sorts the mussel data, first by species, then by length.

proc sort data=mussel;
by species length;
run;

proc print data=mussel;
run;

Adding PROC SORT and PROC PRINT to the SAS file produces the following output:

The SAS System

Obs    species    length    width    loglength    shellratio
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1     edulis      48.4      10.4     1.68485       0.21488
2     edulis      49.0      11.0     1.69020       0.22449
3     edulis      52.7      10.7     1.72181       0.20304
4     edulis      56.2      13.2     1.74974       0.23488
5     trossulus   37.2       7.1     1.57054       0.19086
6     trossulus   45.9       9.4     1.66181       0.20479
7     trossulus   46.2       8.9     1.66464       0.19264
8     trossulus   47.6       9.5     1.67761       0.19958
9     trossulus   51.2       9.1     1.70927       0.17773

As you can see, the data were sorted first by species, then within each species, they were
sorted by length.

Graphs in SAS
It's possible to draw graphs with SAS, but I don't find it to be very easy. I recommend

you take whatever numbers you need from SAS, put them into a spreadsheet, and use that
to draw your graphs.

Getting data from a spreadsheet into SAS
I find it easiest to enter my data into a spreadsheet first, even if I'm going to analyze it

using SAS. If you try to copy data directly from a spreadsheet into a SAS file, the numbers
will be separated by tabs, which SAS will choke on. One way to fix this is to copy the data
from the spreadsheet into a text editor (TextEdit on a Mac, Notepad on Windows), then do
a search-and-replace to change all the tabs to spaces. You can then copy from the text
editor and paste into the file you've opened on Strauss with Pico. Another way to get rid of
the tabs is to use the Save As... command and save the spreadsheet as Space-delimited
Text. After that, you open the file with TextEdit or Notepad, copy it, and paste it into your
file on Strauss.

If you're going to keep your data in a separate file from the SAS program and read it
using an INFILE statement, you can use the DELIMITER command to tell it that the
values are separated by tabs. Here I've made a file named SHELLS.DAT using a
spreadsheet, in which the values are separated by tabs (represented as '09'x in SAS):

data mussel;
infile 'shells.dat' delimiter='09'x;
input species $ length width;

If you have data separated by some other character, just put it in single quotation marks,
such as DELIMITER='!' for data separated by exclamation marks.
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More information about SAS
The user manuals for SAS (http://support.sas.com/onlinedoc/913/docMainpage.jsp) are

available online for free, which is nice. Unfortunately, they're in "frames" format, which
makes it impossible to link to specific pages, so you won't see links to the appropriate
topics in the manual in this handbook.

The UCLA Academic Technology Services has put together an excellent set of
examples of how to do the most common statistical tests in SAS, SPSS or Stata
(http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm) ; it's a good place to start if
you're looking for more information about a particular test.
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Choosing a statistical test

This table is designed to help you decide which statistical test or descriptive
statistic is appropriate for your experiment. In order to use it, you must be able to
identify all the variables in the data set and tell what kind of variables they are:
nominal ("nom." in the table), continuous ("cont."), or rank.

The "hidden" nominal variable in a regression is the nominal variable that groups
together two or more observations; for example, in a regression of height and weight,
the hidden nominal variable is the name of each person. Most texts don't count this as
a variable, and you don't need to write it down (you could just group the the height
and weight numbers by putting them on the same line), so that's why I'm calling it
"hidden."

test nom. cont. rank purpose notes example

exact test for
goodness-of-fit 1 - -

test fit of
observed
frequencies to
expected
frequencies

used for small sample
sizes (less than 1000)

count the number of males
and females in a small sample,
test fit to expected 1:1 ratio

G-test for
goodness-of-fit 1 - -

test fit of
observed
frequencies to
expected
frequencies

used for large sample
sizes (greater than
1000)

count the number of red, pink
and white flowers in a genetic
cross, test fit to expected 1:2:1
ratio

Chi-square test
for goodness-
of-fit

1 - -

test fit of
observed
frequencies to
expected
frequencies

used for large sample
sizes (greater than
1000)

count the number of red, pink
and white flowers in a genetic
cross, test fit to expected 1:2:1
ratio

Randomization
test for
goodness-of-fit

1 - -

test fit of
observed
frequencies to
expected
frequencies

used for small sample
sizes (less than 1000)
with a large number of
categories

count the number of offspring
in a trihybrid genetic cross,
test fit to expected
27:9:9:9:3:3:3:1 ratio
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test nom. cont. rank purpose notes example

G-test of
independence 2+ - -

test
hypothesis
that
proportions
are the same
in different
groups

large sample
sizes (greater
than 1000)

count the number of apoptotic vs. non-
apoptotic cells in liver tissue of organic
chemists, molecular biologists, and regular
people, test the hypothesis that the
proportions are the same

Chi-square test
of
independence

2+ - -

test
hypothesis
that
proportions
are the same
in different
groups

large sample
sizes (greater
than 1000)

count the number of apoptotic vs. non-
apoptotic cells in liver tissue of organic
chemists, molecular biologists, and regular
people, test the hypothesis that the
proportions are the same

Fisher's exact
test 2 - -

test
hypothesis
that
proportions
are the same
in different
groups

used for
small sample
sizes (less
than 1000)

count the number of left-handed vs. right-
handed grad students in Biology and
Animal Science, test the hypothesis that the
proportions are the same

Randomization
test of
independence

2 - -

test
hypothesis
that
proportions
are the same
in different
groups

used for
small sample
sizes (less
than 1000)
and large
numbers of
categories

count the number of cells in each stage of
the cell cycle in two different tissues, test
the hypothesis that the proportions are the
same

Mantel-
Haenzel test 3 - -

test
hypothesis
that
proportions
are the same
in repeated
pairings of
two groups

-

count the number of left-handed vs. right-
handed grad students in Biology and
Animal Science at several universities, test
the hypothesis that the proportions are the
same; alternate hypothesis is a consistent
direction of difference
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test nom. cont. rank purpose notes example

arithmetic
mean - 1 -

description of
central
tendency of
data

- -

median - 1 -

description of
central
tendency of
data

more useful than mean
for very skewed data

median height of trees in forest, if
most trees are short seedlings and
the mean would be skewed by the
few very tall trees

range - 1 -
description of
dispersion of
data

used more in everyday
life than in scientific
statistics

-

variance - 1 -
description of
dispersion of
data

forms the basis of many
statistical tests; in
squared units, so not
very understandable

-

standard
deviation - 1 -

description of
dispersion of
data

in same units as original
data, so more
understandable than
variance

-

standard
error of
the mean

- 1 -

description of
accuracy of
an estimate
of a mean

- -

confidence
interval - 1 -

description of
accuracy of
an estimate
of a mean

- -
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test nom. cont. rank purpose notes example

one-way
anova,
model I

1 1 -

test the hypothesis
that the mean
values of the
continuous
variable are the
same in different
groups

model I: the nominal
variable is
meaningful,
differences among
groups are interesting

compare mean heavy metal
content in mussels from Nova
Scotia, Maine, Massachusetts,
Connecticut, New York and New
Jersey, to see whether there is
variation in the level of pollution

one-way
anova,
model II

1 1 -

estimate the
proportion of
variance in the
continuous
variable
"explained" by the
nominal variable

model II: the
nominal variable is
somewhat arbitrary,
partitioning variance
is more interesting
than determining
which groups are
different

compare mean heavy metal
content in mussels from five
different families raised under
common conditions, to see if
there is heritable variation in
heavy metal uptake

sequential
Dunn-
Sidak
method

1 1 -

after a significant
one-way model I
anova, test the
homogeneity of
means of planned,
non-orthogonal
comparisons of
groups

-

compare mean heavy metal
content in mussels from Nova
Scotia+Maine vs.
Massachusetts+Connecticut, also
Nova Scotia vs.
Massachusetts+Connecticut+New
York

Gabriel's
comparison
intervals

1 1 -

after a significant
one-way model I
anova, test for
significant
differences
between all pairs
of groups

-

compare mean heavy metal
content in mussels from Nova
Scotia vs. Maine, Nova Scotia vs.
Massachusetts, Maine vs.
Massachusetts, etc.

Tukey-
Kramer
method

1 1 -

after a significant
one-way model I
anova, test for
significant
differences
between all pairs
of groups

-

compare mean heavy metal
content in mussels from Nova
Scotia vs. Maine, Nova Scotia vs.
Massachusetts, Maine vs.
Massachusetts, etc.

Bartlett's
test 1 1 -

test the hypothesis
that the variance of
a continous
variable is the
same in different
groups

usually used to see
whether data fit one
of the assumptions of
an anova

-
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test nom. cont. rank purpose notes example

nested
anova 2+ 1 -

test hypothesis that the
mean values of the
continous variable are
the same in different
groups, when each group
is divided into
subgroups

subgroups must
be arbitrary
(model II)

compare mean heavy metal
content in mussels from Nova
Scotia, Maine, Massachusetts,
Connecticut, New York and New
Jersey; several mussels from
each location, with several metal
measurements from each mussel

two-way
anova 2 1 -

test the hypothesis that
different groups,
classified two ways,
have the same means of
the continuous variable

-

compare cholesterol levels in
blood of male vegetarians,
female vegetarians, male
carnivores, and female
carnivores

paired t-
test 2 1 -

test the hypothesis that
the means of the
continuous variable are
the same in paired data

-
compare the cholesterol level in
blood of people before vs. after
switching to a vegetarian diet

linear
regression - 2 -

see whether variation in
an independent variable
causes some of the
variation in a dependent
variable; estimate the
value of one unmeasured
variable corresponding
to a measured variable

-

measure chirping speed in
crickets at different
temperatures, test whether
variation in temperature causes
variation in chirping speed; or
use the estimated relationship to
estimate temperature from
chirping speed when no
thermometer is available

correlation - 2 - see whether two
variables covary -

measure salt intake and fat intake
in different people's diets, to see
if people who eat a lot of fat also
eat a lot of salt

multiple
regression - 3+ -

fit an equation relating
several X variables to a
single Y variable

-

measure air temperature,
humidity, body mass, leg length,
see how they relate to chirping
speed in crickets

polynomial
regression - 2 -

test the hypothesis that
an equation with X2, X3,
etc. fits the Y variable
significantly better than
a linear regression

- measure running speed in
humans aged 5 to 95

analysis of
covariance 1 2 -

test the hypothesis that
different groups have the
same regression lines

first step is to
test the
homogeneity of
slopes; if they
are not
significantly
different, the
homogeneity of
the Y-intercepts
is tested

measure chirping speed vs.
temperature in four species of
crickets, see if there is significant
variation among the species in
the slope or y-intercept of the
relationships
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test nom. cont. rank purpose notes example

sign test 2 - 1

test
randomness of
direction of
difference in
paired data

often used as a
non-parametric
alternative to a
paired t-test

compare the cholesterol level in blood
of people before vs. after switching to
a vegetarian diet, only record whether
it is higher or lower after the switch

Kruskal–Wallis
test 1 - 1

test the
hypothesis that
rankings are
the same in
different
groups

often used as a
non-parametric
alternative to
one-way anova

40 ears of corn (8 from each of 5
varieties) are judged for tastiness, and
the mean rank is compared among
varieties

Spearman rank
correlation - - 2

see whether
the ranks of
two variables
covary

often used as a
non-parametric
alternative to
regression or
correlation

ears of corn are ranked for tastiness
and prettiness, see whether prettier
corn is also tastier
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